

YEARLY PAST PAPERS WITH TOPICAL QUESTIONS TRACKER

Cambridge IGCSE®

Combined Science (0653) Paper 4

[Structured Questions]

SAMPLE EDITION 2018 QUESTION PAPERS

Note:

This Sample Edition includes 2018 papers only. Provided for preview purposes to demonstrate format, organisation, and content quality. The full edition contains all examination years listed. For more information, visit:

IGCSE Combined Science (0653) Product Page

Contents

1	2018 F	${ m Feb/Mar}$ ${ m Variant}$ 2 ${ m 0653_m18_qp_42}$	2
2	2018 N	$egin{array}{lll} ext{May/Jun} & ext{Variant 1} & ext{0653} ext{s18} ext{qp_41} \end{array}$	23
3	2018 N	May/Jun Variant 2 0653_s18_qp_42	44
4	2018 N	$ m May/Jun \mid Variant \ 3 \mid 0653_s18_qp_43$	69
5	2018 0	$ m Oct/Nov \mid Variant \ 1 \mid 0653_w18_qp_41$	90
6	2018 0	Oct/Nov Variant 2 0653_w18_qp_42	11
7	2018 0	Oct/Nov Variant 3 0653_w18_qp_43	36
A	A.1 H A.2 A	ow the Topical Questions Tracker Works	61 61 61 61
В	B.1 B B B B B B B B B B B B B B B B B B B	diology 1 d.1.1 Cells 1 d.1.2 Biological molecules 1 d.1.3 Plant nutrition 1 d.1.4 Human nutrition 1 d.1.5 Transport in plants 1 d.1.6 Transport in animals 1 d.1.7 Diseases and immunity 1 d.1.8 Gas exchange in humans 1 d.1.9 Respiration 1 d.1.10 Reproduction 1	62 62 62 62 62 62 63 63 63
	B.2 C B B B B B B B B B B B B B B B B B B B	Chemistry 1 1.2.1 Atoms, elements and compounds 1 1.2.2 Stoichiometry 1 2.3 Electrochemistry 1 1.2.4 Chemical energetics 1 2.5 Chemical reactions 1 2.6 Acids, bases and salts 1 2.7 The Periodic Table 1 2.8 Metals 1 2.9 Chemistry of the environment 1 2.10 Organic chemistry 1 2.11 Experimental techniques and chemical analysis 1 thysics 1 3.1 Motion, forces and energy 1 3.2 Thermal physics 1 3.3 Waves 1 3.4 Electricity 1	64 65 65 65 66 66 66 66 67 67 67 68 68

$1 - 2018 \mid Feb/Mar \mid Variant \ 2 \mid 0653_m18_qp_42$

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	Subtopic	Page
1	a(i)	Biology	Reproduction	4
1	a(ii)	Biology	Reproduction	4
1	b(i)	Biology	Reproduction	4
L	b(ii)	Biology	Reproduction	4
L	b(iii)	Biology	Reproduction	4
l	c	Biology	Transport in animals	5
2	a(i)	Chemistry	Electrochemistry	6
2	a(ii)	Chemistry	Electrochemistry	6
2	b(i)	Chemistry	${ m Metals}$	7
2	b(ii)	Chemistry	${ m Metals}$	7
2	c	Chemistry	The Periodic Table	7
3	\mathbf{a}	Physics	Space physics	8
3	b	Physics	Motion, forces and energy	8
3	c(i)	Physics	Motion, forces and energy	9
3	c(ii)	Physics	Motion, forces and energy	9
3	c(iii)	Physics	Motion, forces and energy	10
3	d	Physics	Electricity	10
4	a	Biology	Plant nutrition	11
4	b(i)	Biology	Plant nutrition	11
4	b(ii)	Biology	Plant nutrition	11
4	c (11)	Biology	Plant nutrition	11
5	a(i)	Chemistry	Atoms, elements and compounds	12
5	a(ii)	Chemistry	Atoms, elements and compounds	12
5	b	Chemistry	Atoms, elements and compounds	12
5	c	Chemistry	The Periodic Table	12
5	d(i)	Chemistry	The Periodic Table	13
5 5	d(i)	Chemistry	The Periodic Table	13
5 6		Physics	Electricity	14
	a L (:)		Waves	14
6	b(i)	Physics		
6	b(ii)	Physics	Waves	14
6	c	Physics	Waves	15
7	a(i)	Biology	Human nutrition	16
7	a(ii)	Biology	Human nutrition	16
7	b(i)	Biology	Diseases and immunity	16
7	b(ii)	Biology	Diseases and immunity	16
7	b(iii)	Biology	Diseases and immunity	16
7	c	Biology	Biological molecules	17
7	d(i)	Biology	Human nutrition	17
7	d(ii)	Biology	Human nutrition	17
8	a	Chemistry	Organic chemistry	18
8	b	Chemistry	Organic chemistry	18
8	c(i)	Chemistry	Chemical reactions	19
3	c(ii)	Chemistry	Chemical reactions	19
8	d	Chemistry	Organic chemistry	19
8	e(i)	Chemistry	Chemistry of the environment	19
8	e(ii)	Chemistry	Chemistry of the environment	19
9	a	Physics	Electricity	20
9	b	Physics	Electricity	20
9	\mathbf{c}	Physics	Electricity	21
9	d	Physics	Electricity	21

 ${\bf Created\ by:\ store.exampaper maker.com}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMBINED SC	IENCE		0653/42
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Paper 4 (Extended)

February/March 2018

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

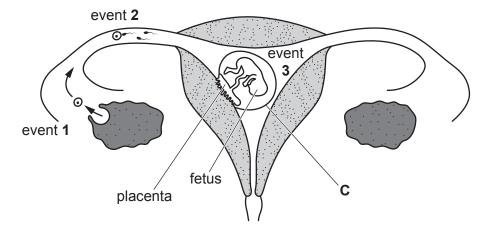
Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.


A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 Fig. 1.1 shows a diagram of the female reproductive system and some events that take place before and during early pregnancy. The fetus is the name for the developing baby.

			F	ig. 1.1		
(a)	(i)	State what ha	appens during events	1 and 2.		
		event 1				
		event 2				
						[2]
	(ii)	Name structu	re C in Fig. 1.1 and s	tate its function.		
		name of C				
		function of C				
						[2]
(b)		-	stances between bloc ne materials that are t			-
	ami	no acids	carbon dioxide	fatty acids	glucose	oxygen
	(i)	Name one sumother's bloo	ubstance from the list	st that shows net	movement fron	the fetus into the
						[1]
	(ii)	State the sou	rce of this substance	in the fetus.		
						[1]
	(iii)	Describe how	the blood in the fetu	s reaches the plac	enta.	
						[1]

(c)	Nicotine and carbon monoxide are taken into the blood when a person smokes.
	Carbon monoxide combines with haemoglobin. This prevents oxygen from being carried in the red blood cells.
	Suggest why carbon monoxide in the mother's blood is harmful to the fetus.
	[2]

2 (a) Copper is extracted from molten copper chloride using electrolysis.

The apparatus is shown in Fig. 2.1.

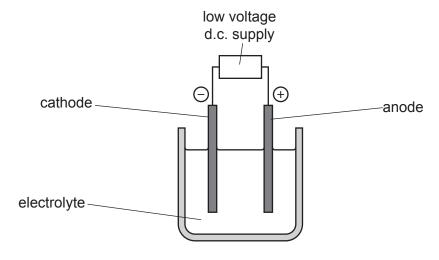


Fig. 2.1

(i) State whether this process for the extraction of copper involves a chemical change or a

	physical change.	
	Explain your answer.	
	change	
	explanation	
		[1
(ii)	Identify the two ions present in the electrolyte and describe, in terms of electrons, changes to these ions at the electrodes.	the
	first ion	
	change	
	second ion	
	change	
		 [3

(b)	b) A student finds out that copper can also be extracted by heating copper(II) oxide with ca				
	(i)	Name the type of chemical reaction in which copper oxide is changed to copper.			
		[1]			
	(ii)	Construct the balanced symbol equation for this reaction.			
		[2]			
(c)	-	oper is one element in a collection of metals which have high melting points, high densities form coloured compounds.			
	Sug met	gest one other property that is shown by these metals and that is not shown by other als.			
		[1]			

3 Fig. 3.1 shows the International Space Station orbiting the Earth.

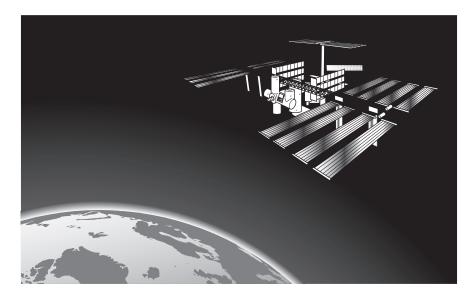


Fig. 3.1

	1 ig. 5.1
(a)	The space station is kept in orbit by the Earth's gravitational field.
	Name the effect of the Earth's gravitational field on a mass.
	[1]
(b)	On one of its orbits, the space station travels at a speed of 28 000 km/h and takes 90 minutes to complete one orbit of the Earth.
	Calculate the distance travelled by the space station during this orbit.
	Show your working.

distance = km [2]

(c) The volume of the Earth is $1.08 \times 10^{21} \, \text{m}^3$.

The average density of the whole Earth is 5530 kg/m³.

(i) Calculate the mass of the Earth.

State the formula you use and show your working.

formula

working

mass =		kg	[2]	
--------	--	----	-----	--

(ii) The average density of the Earth's crust is 2700 kg/m³.

Fig. 3.2 shows the interior structure of the Earth.

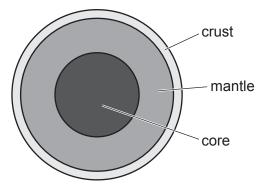


Fig. 3.2

Suggest how the average density of the mantle and core compares with the density of the crust.

Explain your answer.	
	[2

(iii)	The Earth's core has two layers. The outer core is liquid, while the inner core is solid Both parts are made mostly of iron.
	State two ways in which the atoms in the outer core will be arranged differently from the atoms in the inner core.

1.	 	 	 	• • • • • • • • • • • • • • • • • • • •	
2.	 	 	 		
•••	 	 	 		 [2]

(d) Fig. 3.3 shows large solar panels that provide energy for the space station.

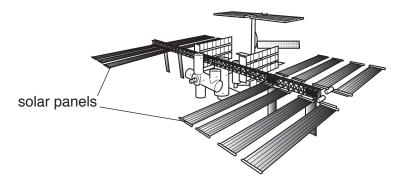


Fig. 3.3

The solar cells are in large panels that face the Sun to gather radiation energy from the Sun. This energy is stored by charging batteries on board the space station.

Complete the sequence of energy conversions that take place.

Radiation from the Sun

to	energy in the solar cells	
to	energy in the batteries.	[2]

4 Fig. 4.1 shows a cross-section of a leaf. Cells **P** and **Q** are examples of mesophyll cells in the leaf.

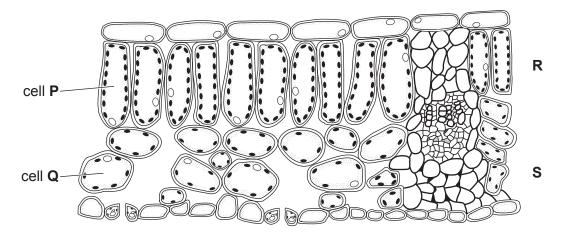


Fig. 4.1

- (a) On Fig. 4.1 draw label lines from
 - 1. **R** to the part of any cell which contains the genetic material,
 - 2. **S** to a part of tissue that transports water.

(c) Describe in detail the function of chlorophyll in chloroplasts.

	5	(a)	An atom	of bromine	is re	presented	by the	symbo
--	---	-----	---------	------------	-------	-----------	--------	-------

79	D	r
35	D	

	(1)	State the h	umber of electrons, fleutron	s anu i	orotons in this atom.	
		electrons				
		neutrons				
		protons				[2]
	(ii)		Table 5.1 to show the relatineutrons and protons.	ive cha	arges and approximate relative	masses of
			Table	5.1		
		particle	relative charges		approximate relative masses	
		electrons				
		neutrons				
		protons				
(b)	Star Exp sod exp 	te the types of the lain your and the lanation	swers in terms of electrons. mine romine			
						[3]
(c)		e Periodic Ta up VII.	able on page 20 shows the	positi	ons of bromine and the other e	elements in
	Pre	dict one Gro	oup VII element that is displa	aced fr	om its salts by bromine.	
						[1]

(a)	Arg	on is a noble gas. The hobie gases are in Group VIII of the Periodic Table.	
	(i)	State the electronic structure of an atom of argon.	
			[1]
	(ii)	State one use of argon.	
			[4]

6 Fig. 6.1 shows two people talking to each other using cordless telephones over a link to a communications satellite.

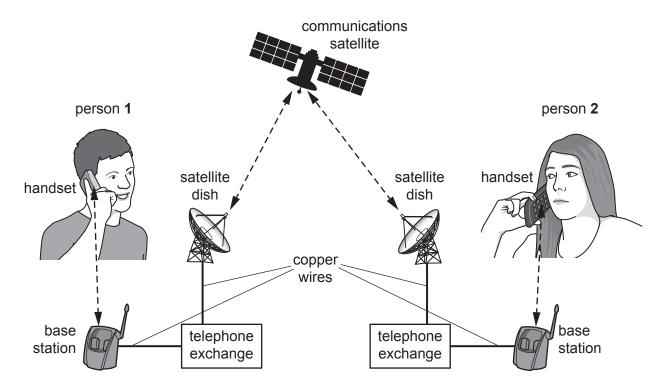


Fig. 6.1

(a)		conversation between the base stations and the satellite dishes is transmitted by electric ents in copper wires. These electric currents change rapidly when each person speaks.
		ine <i>current</i> and suggest what is happening in terms of particles in a copper wire when a nging current passes through it.
		[2]
(b)		e person is speaking. Information is transmitted at frequencies of 300 Hz and 2.8 \times 10 9 Hz ifferent stages in the communications system.
		ntify the stage at which each of these frequencies is being used, and state the type of re involved.
	(i)	A frequency of 300 Hz.
	(::\	
	(ii)	A frequency of 2.8 × 10 ⁹ Hz.

(C)	when a satellite telephone is used, there is a delay of about 0.1s between one person speaking and the other person hearing.
	Explain why this delay happens.
	[2]

(a)	Bre	One mineral contained in milk is iron.					
	One						
	(i)	State t	he role of iron in the body.				
			[1]				
	(ii)		nia occurs due to a shortage of iron in the body.				
		Descri	be one symptom of anaemia.				
(b)	A st	udent u	ses milk to make yoghurt at home. The stages below show the method he uses.				
	stag	ge 1	He heats some milk to 90 °C, then allows it to cool.				
	stag	ge 2	He adds a small amount of yoghurt which he bought in a supermarket. The yoghurt contains live microorganisms.				
	stag	ge 3	He stirs the mixture then leaves it in an oven set at 45 °C for several hours.				
	stag	ge 4	When the mixture thickens the yoghurt is ready and the student places it in a fridge.				
	(i)	Explaii	n why the student carries out the following processes in stage 1.				
		1. He	eating the milk to 90 °C.				
		2. All	owing the milk to cool.				
			[2]				
	(ii)	Sugge	st why the student only needs to use a small amount of the yoghurt in stage 2.				
			[1]				
	(iii)	Predicto 4 .	t whether the student can use some of the yoghurt he has made to repeat stages 1				
		Explaii	n your answer.				
			[4]				

(c)		oorganisms in the yoghurt feed on the sugar in the milk and make lactic acid. The acid cts the proteins in the milk and the yoghurt becomes thick.
	Sug	gest and describe in detail what happens to the protein molecules in the milk.
		[2]
(d)	The	re is no fibre present in the yoghurt.
	(i)	Explain why fibre is needed in a balanced diet.
		[1]
	(ii)	Suggest a way of including fibre in the yoghurt.
		[1]

8 Petroleum is separated into useful fractions by fractional distillation.

Process Y produces short alkene molecules from longer alkane molecules.

These processes are shown in Fig. 8.1.

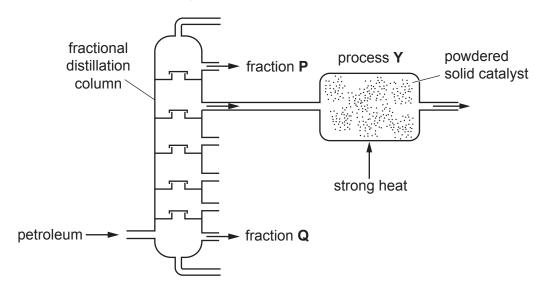


Fig. 8.1

(a) Fraction P and fraction Q contain different compounds.

	Describe two of the differences between the compounds in fraction P and those in fraction Q .
	1
	2
	[2]
(b)	Name process Y.
	[1]

(c)	The rate of reaction in process Y is increased by using a powdered solid catalyst and a high temperature.						
	(i)	State why the catalyst is used in the form of a powder.					
	(ii)	Explain how a high temperature increases the rate of reaction in process Y.					
		Use ideas about particles in your answer.					
(d)	Bro	mine is added to two different samples of hydrocarbons A and B .					
	Hydrocarbon A decolourises the bromine.						
	Hydrocarbon B has no effect on the bromine.						
	Stat	te these two types of hydrocarbon.					
	Α						
	В		[1]				
(e)	The	combustion of hydrocarbons produces a gas that turns limewater milky.					
	(i)	State the formula of this gas.					
			[1]				
	(ii)	Suggest one concern that people have as the proportion of this gas is increasing in air.	the				
			.[1]				

9 Fig. 9.1 shows the circuit for an immersion heater using electrical energy to heat water. Two electric heating elements are immersed in water inside a large tank.

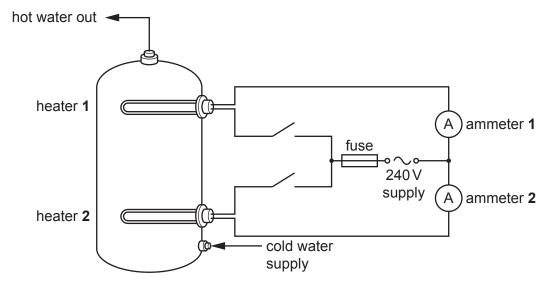


Fig. 9.1

The electrical energy is supplied at 240 V.

When both heaters are switched on, ammeter 1 reads 4A, and ammeter 2 reads 10A, giving a total current of 14A through the fuse.

(a)	The fuse in the supply circuit has a value of 20A printed on it.
	Explain why a 20A fuse is used in this circuit.
	[1]
(b)	Calculate the total resistance of the two heaters.
	State the formula you use, and show your working.
	formula
	working

resistance = Ω [2]

(c)	Calculate the electrical energy supplied by heater 2 when it is switched on for 8 hours.
	State any formula you use, and show your working.
	formula
	working
	energy = J [2]
(d)	Heater 2 is used to provide a full tank of hot water, while heater 1 is used to provide a small amount of hot water quickly when the water in the tank is cold.
	Explain why heater 1 is able to provide a small amount of hot water quickly without heating the whole tankful of water. You may wish to draw a diagram to help your answer.
	্যি
	131

The Periodic Table of Elements

	\	2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	86	R	radon -			
	II/				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	н	iodine 127	82	At	astatine -			
	N									sulfur 32										16	>	norium
	_					_		_		38 8	e,	<i>(</i>)	sele 7	2	_	tellu 7	80	<u>п</u>	olod .	<u>+</u>	_	livern.
	>				7	z	nitrogen 14	15	凸	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
	2				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ъ	lead 207	114	Εl	flerovium
	≡				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	ű	copernicium
											29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium
dr											28	Z	nickel 59	46	Pd	palladium 106	78	置	platinum 195	110	Ds	darmstadtium -
Group											27	ဝိ	cobalt 59	45	몺	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	НS	hassium
					J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						Ю	ø				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	Та	tantalum 181	105	Op O	dubnium
					atr	aton	relati				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	₩	rutherfordium -
								J			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium
	_				3	:=	lithium 7	1	Na	sodium 23	19	×	potassium 39	37	& S	rubidium 85	55	Cs	caesium 133	87	ъ.	francium

۲۷ .	3	Intetium	175	103	ئـ	lawrencium	ı
70	Υb	ytterbium	173	102	Š	nobelium	1
69	E	thulium	169	101	Md	mendelevium	ı
89	й	erbium	167	100	Fm	fermium	ı
29	운	holmium	165	66	Es	einsteinium	ı
99	Š	dysprosium	163	86	ర్	californium	ı
65	<u>Q</u>	terbium	159	97	Ř	berkelium	1
64	<u></u>	gadolinium	157	96	Cm	curium	ı
63	П	europium	152	92	Am	americium	ı
62	SB	samarium	150	94	Pn	plutonium	ı
61	F	promethium	ı	93	ď	neptunium	ı
09	D Z	neodymium	144	92	\supset	uranium	238
59	٦	praseodymium	141	91	Ра	protactinium	231
58	Č	cerium	140	06	T	thorium	232
22	Б	lanthanum	139	88	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

$2 \quad 2018 \mid May/Jun \mid Variant \ 1 \mid 0653_s18_qp_41$

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	$\operatorname{Subtopic}$	Page
1	a	Biology	Biological molecules	25
1	b	Biology	Human nutrition	25
1	\mathbf{c}	Biology	Transport in animals	25
1	d(i)	Biology	Transport in animals	26
1	d(ii)	Biology	Transport in animals	26
2	a(i)	Chemistry	${ m Metals}$	27
2	a(ii)	Chemistry	${ m Metals}$	27
2	b(i)	Chemistry	${ m Metals}$	28
2	b(ii)	Chemistry	${ m Metals}$	28
2	b(iii)	Chemistry	${ m Metals}$	28
2	c(i)	Chemistry	Atoms, elements and compounds	29
2	c(ii)	Chemistry	Atoms, elements and compounds	29
3	a(i)	Physics	Motion, forces and energy	30
3	a(ii)	Physics	Motion, forces and energy	30
3	b(i)	Physics	Motion, forces and energy	31
3	b(ii)	Physics	Motion, forces and energy	31
3	c	Physics	Motion, forces and energy	32
4	a(i)	Biology	Plant nutrition	33
1	a(ii)	Biology	Plant nutrition	33
1	b(i)	Biology	Respiration	33
1	b(ii)	Biology	Transport in plants	33
5	a(i)	Chemistry	Organic chemistry	34
5	a(ii)	Chemistry	Atoms, elements and compounds	34
5	a(iii)	Chemistry	Organic chemistry	34
5	b(i)	Chemistry	Chemistry of the environment	34
5	b(ii)	Chemistry	Chemical energetics	35
6	a	Physics	Waves	36
6	b(i)	Physics	Thermal physics	37
6	b(ii)	Physics	Thermal physics	37
6	b(iii)	Physics	Thermal physics	37
7	a(i)	Biology	Organisms and their environment	38
7	a(ii)	Biology	Organisms and their environment	38
7	b(i)	Biology	Organisms and their environment	38
7	b(ii)	Biology	Organisms and their environment	38
8	a(i)	Chemistry	Electrochemistry	39
3	a(ii)	Chemistry	Electrochemistry	39
8	b(i)	Chemistry	Metals	39
8	b(ii)	Chemistry	Metals	39
3	c(i)	Chemistry	The Periodic Table	40
3	c(ii)	Chemistry	The Periodic Table	40
)	a(i)	Physics	Electricity	41
9	a(ii)	Physics	Electricity	41
9	a(iii)	Physics	Electricity	42
9 9	a(111) b	Physics	Electricity	42

 ${\bf Created\ by:\ store.exampaper maker.com}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	

0 N 0 0 N

COMBINED SCIENCE

0653/41

Paper 4 (Extended)

May/June 2018

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Table 1.1 shows four substances found in food, and elements they may contain.

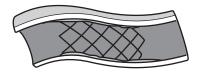
Complete Table 1.1 by placing a tick (\checkmark) in the box if the elements shown are contained in the substances.

Table 1.1

substance in food	element							
Substance in 1000	carbon	hydrogen	nitrogen	oxygen				
carbohydrate								
fat								
protein								
water								

[4]

[3]


(b)	Health pro	blems o	can occur	if a pers	on doe	s not	eat a healt	hy diet.			
	Describe h	ow a p	erson can	improve	their d	liet if t	hey suffer	from con	stipation.		
	Explain yo	ur ansv	ver.								
											[2]
(c)	A poor diet	over a	long time	can also	o contri	bute t	co coronary	/ heart dis	sease.		
	Complete t	the follo	owing sen	tences u	sing the	e wor	ds from the	e list.			
	Each word	may b	e used or	ice, more	than c	nce c	or not at all				
			cilia	fatty	ı	nucu	s pr	otein			
			smok	ing	stres	s	unheal	thy			
	Coronary	heart	disease	occurs	when	the	coronary	arteries	become	narrowed	by
				depo	sits. In	additi	on to a poo	or diet pos	ssible caus	ses of coror	nary
	heart disea	ase are					and				

(d) Coronary heart disease can be treated by inserting a stent into a narrowed coronary artery.

Fig. 1.1 shows a stent inside a coronary artery. Blood can flow freely through the stent.

coronary artery with stent inserted

Fig. 1.1

(i)	Describe the effect of the stent on the rate of blood flow through the coronary artery.
	Explain your answer.
	[1]
(ii)	Explain how the stent can benefit the heart muscle.
	[2]

2 (a) A student investigates the relative reactivity of different metals.

She places cleaned pieces of each metal in separate metal chloride solutions, as shown in Fig. 2.1.

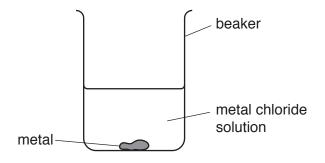


Fig. 2.1

She records her observations in Table 2.1.

Table 2.1

	metal chloride solution							
metal	aluminium chloride	lead chloride	tin chloride	zinc chloride				
aluminium	_	1	1	✓				
lead	×	_	Х	Х				
tin	×	1	_	Х				
zinc	×	1	1	_				

key: ✓ reaction occurs

- x no reaction
- metal not placed into solution

(i)	Explain why the student does not use all combinations of metal and metal chloride solution.
	[1]
(ii)	Deduce the order of reactivity of the four metals, from most reactive to least reactive.
	most reactive

least reactive

	5
And	ther metal, magnesium, reacts with dilute hydrochloric acid.
Dur	ing this reaction, hydrogen gas and a salt are produced.
(i)	Name the salt.
	[1]
(ii)	Construct the balanced symbol equation for this reaction.
	Include state symbols.
	[2]
(iii)	Complete Fig. 2.2 to show apparatus used to collect the gas produced and measure its volume.
	List the additional apparatus needed to measure the rate of this reaction.
	Dur

Fig. 2.2

apparatus [2] (c) An atom of aluminium is represented by:

 $^{27}_{13}$ Al

(i) Define mass number.

(ii) Complete Fig. 2.3 to show the electronic structure of an atom of aluminium.

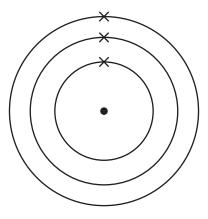


Fig. 2.3

[2]

3 Fig. 3.1 shows an airship carrying a load of weight W.

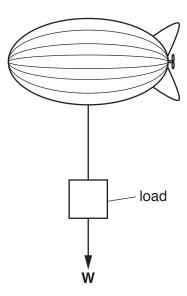


Fig. 3.1

- (a) The airship and load are moving along horizontally on a calm day with no wind.
 - (i) On Fig. 3.1 draw another force arrow to show how the vertical forces acting on the load are balanced. [1]
 - (ii) At one time in its journey, the airship is moving and all of the forces acting on the airship are balanced.

Describe the moti	on of the airship at this	time.	
			[1]

(b) The airship moves at a constant height.

Fig. 3.2 shows a speed-time graph for part of the journey.

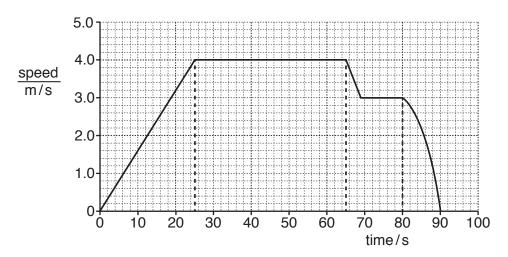


Fig. 3.2

(i) Use terms from the list to complete the statements below.

Each term may be used once, more than once or not at all.

changing acceleration	constant acceleration	constant speed
Between 0s and 25s the air	rship travels with	
Between 25s and 65s the a	airship travels with	
Between 80s and 90s the a	airship travels with	

(ii) Calculate how far the airship travelled in the first 65s of its journey.

Show your working.

distance = m [2]

[1]

(c)	The load is a solid metal cube of density 7000 kg/m ³ . Each side of the cube measures 2.0 m.
	Calculate the mass of the metal cube.
	State any formula you use and show your working.

mass =kg [3]

4 (a) Fig. 4.1 shows three leaves **P**, **Q** and **R**. The leaves are of similar size. They are all taken from the same type of plant on a sunny day.

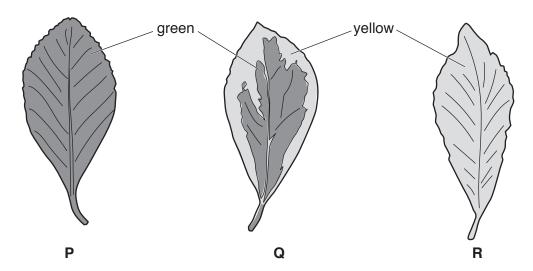


Fig. 4.1

	(1)	Suggest which leaf traps the most light energy.	
		Explain your answer.	
		leaf	
		explanation	
	(ii)	Describe in detail what happens to the light energy that is trapped in the leaves.	[1]
			[2]
(b)	All	cells of plants need a source of glucose for aerobic respiration.	
	(i)	State the balanced symbol equation for aerobic respiration.	
			[0]
	("" \		[∠]
	(ii)	Suggest how root cells are supplied with glucose.	
			[2]

(a)	Ethe	ene is manufactured by cracking larger hydrocarbon molecules.	
	(i)	State what is meant by a <i>hydrocarbon</i> .	
	(ii)	Complete the dot-and-cross diagram in Fig. 5.1 to show the bonding electrons molecule of ethene, $\rm C_2H_4.$	in a
		C C	
		Fig. 5.1	[2]
	(iii)	Describe a test to distinguish between ethane and ethene.	
		State the result for each.	
		test	
		ethane	
		ethene	[2]
(b)	Dur	ing the complete combustion of hydrocarbons, carbon dioxide is formed.	
	(i)	The proportion of carbon dioxide in air is increasing.	
		Explain why this gives cause for concern.	
			[1]
		(ii) (iii)	(ii) Complete the dot-and-cross diagram in Fig. 5.1 to show the bonding electrons molecule of ethene, C ₂ H ₄ . C C Fig. 5.1 (iii) Describe a test to distinguish between ethane and ethene. State the result for each. test

	Use ideas about energy transformations in your answer.
	Explain what is meant by exothermic.
(ii)	The combustion of hydrocarbons is an exothermic change.

6 Fig. 6.1 shows a man watching television. He changes the channel with a remote control. The channel he now watches is showing a hot-air balloon high in the sky.

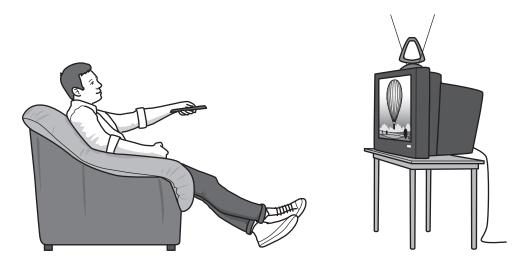


Fig. 6.1

(a) Fig. 6.2 shows an incomplete electromagnetic spectrum.

On Fig. 6.2 write in their correct boxes the names of the parts of the electromagnetic spectrum used for

- · television transmission,
- · changing the channel,
- watching the television.

Draw a line to link each use to the correct part of the spectrum you have named. One line has been completed for you.

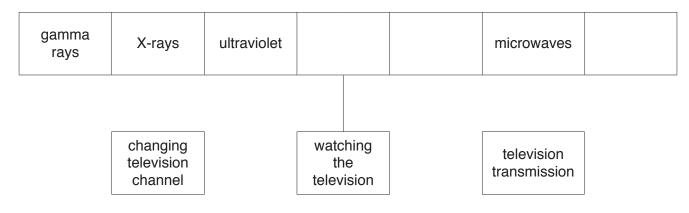


Fig. 6.2

[3]

(b) Fig. 6.3 shows a hot-air balloon being prepared for flight. A fuel burner produces hot gases. The balloon fills with the hot gases and the balloon rises up into the air.

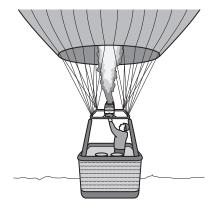


Fig. 6.3

(i)	State the name of the method of thermal energy transfer from the fuel burner upwards into the balloon.
	[1]
(ii)	Explain in terms of density changes why this method of thermal energy transfer fills the balloon with the hot gases.
	[2]
(iii)	Explain in terms of the motion of molecules, and the forces and distances between them why the density of a gas changes on heating.
	[3]

7 (a) Fig. 7.1 shows a food web in a garden.

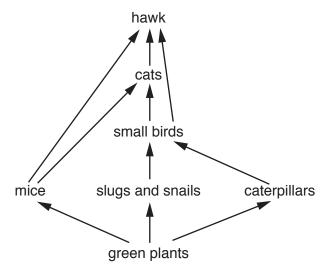


Fig. 7.1

(i) Using information in Fig. 7.1, draw a complete food chain consisting of only four organisms.

[2]

	(ii)	Name all organisms that feed at the same trophic level as the small birds.	
			[2]
(b)	(i)	The arrows show the transfer of chemical energy from one organism to another.	
		State two reasons why not all of the energy is transferred from the cat to the hawk.	
		1	
		2	
	(ii)	Explain why there are not usually more than five trophic levels in a food chain.	[2]
			[4]

8 (a) A student tries to make lead from a sample of solid lead(II) bromide using the electrolysis apparatus shown in Fig. 8.1.

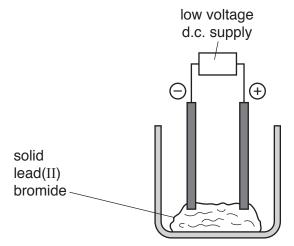


Fig. 8.1

This electrolysis does not work.

	(i)	Suggest a change that the student can make to the lead(II) bromide so that the electrolysis does work.	те
		[1]
	(ii)	Explain why the electrolysis of solid lead(II) bromide does not work.	
		Use ideas about ions in your answer.	
		[1]
(b)	(i)	Iron is extracted from its ore using carbon in an industrial process.	
		Name the industrial reaction vessel used.	
		[[1]
	(ii)	Iron can be extracted from its ore using carbon.	
		Calcium, a Group II metal, cannot be extracted from its ore using carbon.	
		Explain this difference.	
		Use ideas about the reactivity of carbon and metals in your answer.	
		,	.01

(c)	(i)	Metal X forms a coloured compound which acts as a catalyst.	
		Name the collection of metals in the Periodic Table which includes X .	
			[1]
	(ii)	Gas Y is an element that is used as an inert atmosphere in lamps.	
		Name the group of elements in the Periodic Table which includes Y.	
			[1]

9 Fig. 9.1 shows a small electric cooker with two hot plates.

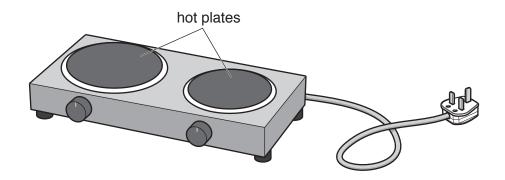


Fig. 9.1

The cooker is connected to a 240 V supply.

The plug contains a fuse with a rating of 13A.

Each hot plate is controlled by a switch and a variable resistor.

Each hot plate can be turned on and off and controlled without affecting the other hot plate.

(a) (i) In Table 9.1 draw the circuit symbols for each component used in the cooker circuit.

Table 9.1

component	fuse	switch	variable resistor
symbol			

[2]

(ii)	Name	the	type	of	circuit	connection	that	will	allow	each	hot	plate	to	be	controlled
	separately by its own switch.														

	(iii)	Use the information about the cooker to draw a circuit diagram for the cooker.
		Use the circuit symbol for a heater to represent a hot plate:
		The circuit diagram has been started for you.
		240 V supply ——○
		[4]
(b)		larger hot plate is rated at a maximum of 1.5 kW, and the smaller hot plate is rated at a kimum of 1.0 kW.
		w by calculation that the 13 A fuse in the plug will not blow when the cooker is used with hot plates at maximum rating.
	Stat	e the formula you use and show your working.
	forn	nula
	wor	king
		[3]
		duce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the

Permis publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Ru	radon				
	II/				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	At	astatine -				
•					8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	molonium —	116	^	livermonium -	
•	>				7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209				
•	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ър	lead 207	114	ŀΙ	flerovium -	
	≡				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				
											30	Zu	zinc 65	48	ၓ	cadmium 112	80	Ъ	mercury 201	112	ပ်	copemicium	
											59	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -	
Group											28	z	nickel 59	46	Pd	palladium 106	78	ᇁ	platinum 195	110	Ds	darmstadtium -	
Gro											27	රි	cobalt 59	45	格	rhodium 103	77	Г	iridium 192	109	M	meitnerium -	
		_	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -	
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –	
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -	
					Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	<u>a</u>	tantalum 181	105	Op	dubnium -
						atc	ie.				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	Ŗ	rutherfordium -	
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids		
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	99	Ba	barium 137	88	Ra	radium -	
	_				က	:= -	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	SP Pb	rubidium 85	55	S	caesium 133	87	ъ́	francium -	
) FC	LEC 0040										_												

71		Intetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	8 N	nobelium	I
69	TB	thulium	169	101	Md	mendelevium	I
89	щ	erbium	167	100	Fm	fermium	I
29	웃	holmium	165	66	Es	einsteinium	_
99	ò	dysprosium	163	86	ర్	californium	I
65	Д	terbium	159	97	Ř	berkelium	_
64	В	gadolinium	157	96	Cm	curium	_
63	Ш	europium	152	92	Am	americium	_
62	Sm	samarium	150	94	Pu	plutonium	_
61	Pm	promethium	I	63	dΝ	neptunium	1
09	PΝ	neodymium	144	92	\supset	uranium	238
69	Ą	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	T	thorium	232
22	Гa	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

$3 \quad 2018 \mid May/Jun \mid Variant \ 2 \mid 0653_s18_qp_42$

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	$\operatorname{Subtopic}$	Page
1	a(i)	Biology	Reproduction	46
1	a(ii)	Biology	Reproduction	46
1	a(iii)	Biology	Reproduction	46
1	b(i)	Biology	Transport in plants	47
1	b(ii)	Biology	Transport in plants	47
1	c	Biology	Transport in plants	47
2	a(i)	Chemistry	Organic chemistry	48
2	a(ii)	Chemistry	Acids, bases and salts	48
2	$\mathbf{b}(\mathbf{i})$	Chemistry	Atoms, elements and compounds	49
2	b(ii)	Chemistry	Atoms, elements and compounds	49
2	c	Chemistry	Atoms, elements and compounds	49
3	\mathbf{a}	Physics	Electricity	50
3	b(i)	Physics	Electricity	50
3	b(ii)	Physics	Electricity	51
3	c	Physics	Waves	51
4	a	Biology	Gas exchange in humans	52
4	a b	Biology	Gas exchange in humans	$\frac{52}{52}$
± 4	C	Biology	Gas exchange in humans	53
4	d(i)	Biology	Transport in animals	53
± 4	d(i)	Biology	Transport in animals Transport in animals	53
± 5		Chemistry	Chemical reactions	54
	a(i)	-		
5	a(ii)	Chemistry	Chemical reactions	54
<u>.</u>	a(iii)	Chemistry	Metals	54 55
5	b(i)	Chemistry	Electrochemistry	55 55
5	b(ii)	Chemistry	Electrochemistry	55
5	b(iii)	Chemistry	Electrochemistry	55
5	b(iv)	Chemistry	Chemical reactions	55
6	a(i)	Physics	Waves	56
3	a(ii)	Physics	Waves	56
6	b	Physics	Waves	56
6	c(i)	Physics	Thermal physics	57
6	c(ii)	Physics	Thermal physics	57
7	a(i)	Biology	Organisms and their environment	58
7	a(ii)	$\operatorname{Biology}$	Organisms and their environment	58
7	a(iii)	$\operatorname{Biology}$	Organisms and their environment	58
7	b(i)	$\operatorname{Biology}$	Organisms and their environment	58
7	b(ii)	$\operatorname{Biology}$	Organisms and their environment	58
7	\mathbf{c}	Chemistry	Chemistry of the environment	59
3	a(i)	Chemistry	Atoms, elements and compounds	60
3	a(ii)	Chemistry	Atoms, elements and compounds	60
3	b(i)	Chemistry	The Periodic Table	60
3	b(ii)	Chemistry	The Periodic Table	60
3	\mathbf{c}	Chemistry	Chemistry of the environment	60
3	d(i)	Chemistry	Chemical energetics	61
8	d(ii)	Chemistry	Acids, bases and salts	61
9	a(i)	Physics	Motion, forces and energy	62
9	a(ii)	Physics	Motion, forces and energy	62
9	b(i)	Physics	Motion, forces and energy	63
9	b(ii)	Physics	Motion, forces and energy	63
9	b(iii)	Physics	Electricity	63
9	c	Physics	Motion, forces and energy	64

 ${\bf Created\ by:\ store.exampaper maker.com}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMBINED S	CIENCE		0653/42
Paper 4 (Exter	nded)		May/June 2018
			1 hour 15 minutes
Candidates an	swer on the Ouestion Paner		

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

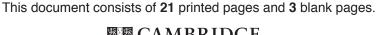
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

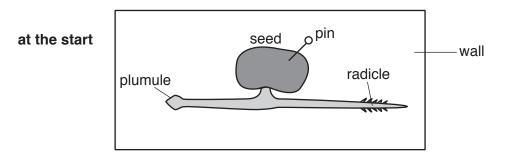
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.


You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows an experiment with a germinating seed. At the start, a seed is pinned to a wall and is placed in the dark.

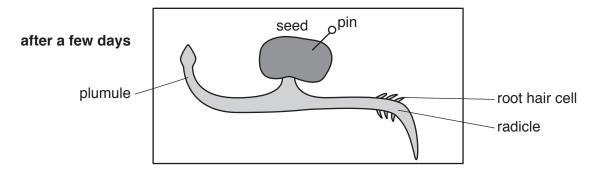


Fig. 1.1

(i)	Name the response shown by the seed in Fig. 1.1 after a few days.	
		[1]
(ii)	Explain the response of the plumule in Fig. 1.1 after a few days in terms of the actio auxin hormones.	n of
		[2]
(iii)	Describe how the action of auxin hormones is different in the cells of the radicle.	
		[1]

(b)	A ra	dicle has root hair cells which are used in water uptake from the soil.	
	(i)	Explain how the shape of the root hair cell helps it with its function of water uptake.	
			[2]
	(ii)	Explain why water moves into the root hair cell from the soil.	
			[2]
(c)	Stat	te the tissue which carries water through the plant.	
			[1]

2 (a) A student investigates the combustion of a hydrocarbon, as shown in Fig. 2.1.

Gases move through the apparatus in the direction shown by the arrows.

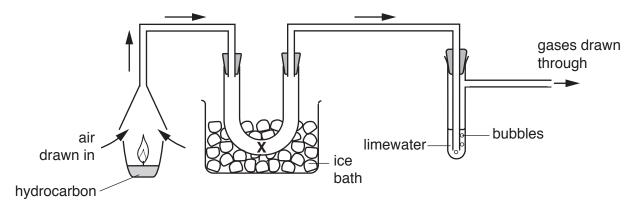
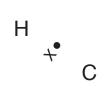



Fig. 2.1

The student thinks that carbon dioxide and water are formed when the hydrocarbon burns.

(i)	Suggest a chemical that the student uses at position X to test for the presence of water.
	State the observation that shows that water is present.
	chemical
	observation
	[2]
(ii)	Limewater contains calcium hydroxide, Ca(OH) ₂ .
	Calcium hydroxide reacts with carbon dioxide to form calcium carbonate, ${\rm CaCO}_3$.
	Write the symbol equation with state symbols for this reaction.
	[2]

(b)	(i)	Complete the	dot-and-cross	diagram	for the	hydrocarbon	C ₂ H ₄ ,	showing	the	bonding
		electrons.								

	(ii)	Carbon and hydrogen are non-metallic elements.	
		State the type of chemical bond that forms between these two elements.	
			[1]
(c)	An	atom of carbon is represented by:	
		¹² ₆ C	
	Sta	te the electronic structure of carbon.	
			[1]

[2]

3 Fig. 3.1 and Fig. 3.2 show two circuit diagrams each connected to operate an electric motor and a lamp.

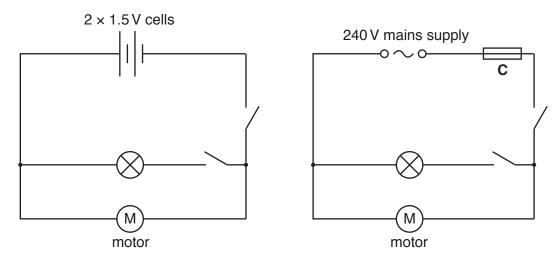


Fig. 3.1 Fig. 3.2

(a) Identify component **C** and explain why it is necessary in the circuit in Fig. 3.2, but not in the circuit in Fig. 3.1.

component C
explanation
[3]

(b) (i) In Fig. 3.1, when the motor is switched on, but the lamp is not, a current of 0.2A flows through the motor.

Calculate the resistance of the motor.

State the formula you use and show your working.

formula

working

resistance = Ω [2]

(ii) In Fig. 3.2, the motor has a power rating of 20 W and the lamp has a power rating of 100 W.

Calculate the current in the main circuit when both the motor and the lamp are switched on.

State the formula you use and show your working.

formula

working

current = A [3]

(c) A lamp is placed in front of a mirror. A student tries to look at the reflection of the lamp in the mirror, as shown in Fig. 3.3.

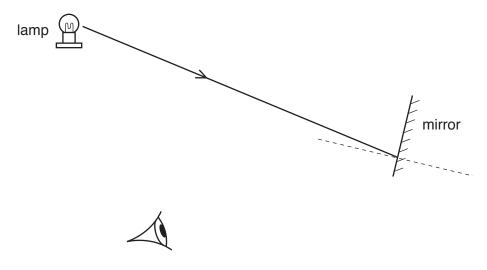
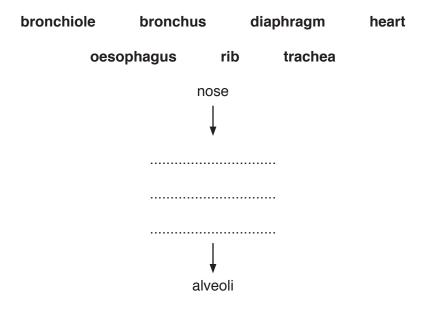
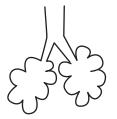



Fig. 3.3

On Fig. 3.3, complete the ray diagram to show whether the student can see the image of the lamp in the mirror or not. [1]


4 (a) During inspiration air passes through different parts of the airway to reach the alveoli.

Use the list of words to show the correct order of structures through which the air passes.

[1]

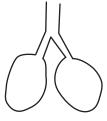
(b) Fig. 4.1 shows drawings of the alveoli in healthy lungs. Fig. 4.1 also shows the alveoli of a person with a lung infection such as bronchitis.

alveoli of a healthy person

alveoli of a person with bronchitis

Fig. 4.1

People who smoke are more likely to suffer from bronchitis.


Describe how cigarette smoke encourages bronchitis by its effect on

1.	the amount of mucus produced by cells lining the airway,	
2.	the cilia on the surface of cells lining the airway.	
		 [3]

(c) Fig. 4.2 shows a drawing of the alveoli in healthy lungs. Fig. 4.2 also shows the alveoli of a person with emphysema, a lung disease caused by smoking.

alveoli in healthy lungs

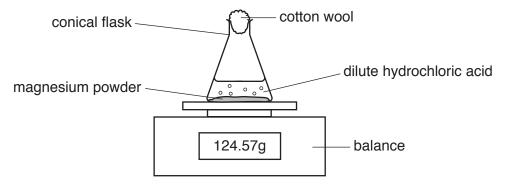

alveoli of a person with emphysema

Fig. 4.2

	Sug	gest how the rate of gas exchange is affected in a person with emphysema.	
	Ехр	olain your answer.	
			[1
d)	Smo	oking is also a possible cause of coronary heart disease.	
	(i)	Describe changes in the heart which cause coronary heart disease.	
			[2
	(ii)	List two other possible causes of coronary heart disease.	
		1	
		2	
			[2

5 (a) A student adds magnesium powder to dilute hydrochloric acid.

She then uses a balance to investigate the rate of this reaction, as shown in Fig. 5.1.

	Fig. 5.1	
(i)	Describe the change in the mass, if any, of the conical flask and its contents.	
	Explain your answer.	
	change	
	explanation	
		[2]
/::\		[4]
(ii)	State the effect of increasing the temperature on the rate of this reaction.	
	Explain your answer.	
	effect	
	explanation	
		[2]
(iii)	Predict the effect of using calcium, rather than magnesium, on the rate of reaction.	
	Explain your answer using ideas about reactivity.	
	effect	
	explanation	
		[2]

(b)	Mag	gnesium is produced by the electrolysis of molten magnesium chloride.	
	Ма	gnesium chloride consists of magnesium ions, $\mathrm{Mg^{2+}}$, and chloride ions, $\mathrm{C}\mathit{l^{-}}$.	
	(i)	Name the electrode at which magnesium forms.	
			[1]
	(ii)	Describe, in terms of electrons, how chloride ions turn into chlorine atoms in this proce	ess.
			[1]
	(iii)	Predict the formula of magnesium chloride.	
			[1]
	(iv)	Magnesium is also produced by heating magnesium oxide with silicon.	
		In this process, oxygen is removed from magnesium oxide.	
		State the type of reaction that leads to the loss of oxygen from a substance.	
			[1]

6 (a) Fig. 6.1 shows an incomplete electromagnetic spectrum linked to some uses of different parts of the electromagnetic spectrum.

electromagnetic spectrum

gamma rays			ultraviolet	visible light	infra-red	microwaves	radio waves		
treatment of cancer		detecting intruders	looking at the Moon with a telescope	checking luggage in airport security	causes sunburn	television transmission	satellite telephones		

uses

Fig. 6.1

(i) On Fig. 6.1 complete the empty box in the electromagnetic spectrum. [1]

(ii) On Fig. 6.1 draw **three more** lines so that each type of electromagnetic wave is linked to a use of that type.

[1]

Four lines have already been done for you.

(b) Infra-red radiation is also used in remote controls for television sets and other electronic devices in the home.

An astronaut on a space walk outside the International Space Station uses the same type of remote control to operate an electronic device in space.

Explain why it is possible for a remote control to work in space.	
	[1]

(c) Fig. 6.2a and Fig. 6.2b show an experiment to investigate the transfer of thermal energy (heat).

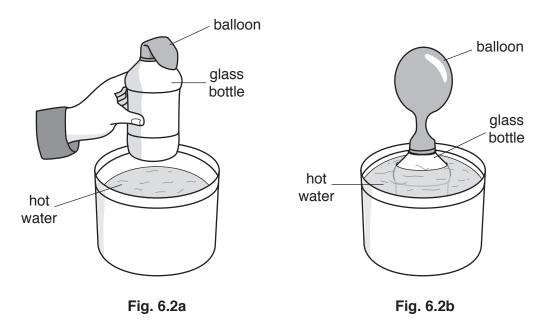


Fig. 6.2a shows the apparatus before the glass bottle is lowered into the hot water.

Fig. 6.2b shows the apparatus after the bottle has been in the water for 5 minutes.

The bottle and the air inside are slowly heated as thermal energy is conducted through the glass and warms the air inside. As the bottle is heated, the balloon fills with air.

(1)	Suggest wity the healing of the all in the bottle is slow.	
		[1]
	Explain in terms of the arrangement and the speed of molecules why the balloon at the glass bottle fills with warm air as the air is heated.	ove
		[3]

7 Fig. 7.1 shows a simplified version of the carbon cycle. The numbers represent processes involved in the cycle.

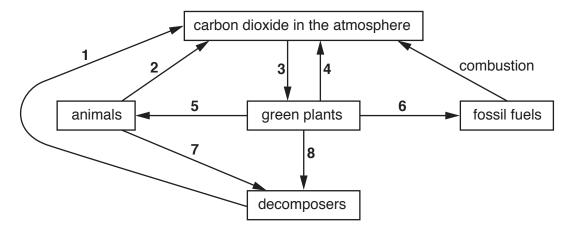


Fig. 7.1

(a) (i) State the source of the energy input to the carbon cycle.
	[1
(ii) Name process 7.
	[1]
(iii	Using Fig. 7.1 state the numbers which represent respiration.
	[1
(b) (i) Name process 3.
	[1
(ii	With reference to process 3, explain the effect of deforestation on the carbon dioxide concentration in the atmosphere.
	TO TO THE PERSON OF THE PE

(c)	The gas sulfur dioxide is released into the atmosphere during the combustion of fossil fu	els.
	Explain the consequences of adding sulfur dioxide to the atmosphere.	
		ſΩ

(a)	(i)	Elements are arranged in the Periodic Table in atomic number order.	
		State the relationship between the group number of an element and the number outer-shell electrons in an atom of the element.	of
			.[1]
	(ii)	Describe the relationship between the number of outer-shell electrons and metallic/non-metallic character of an element.	the
(b)	Rub	pidium is a Group I metal below potassium in the Periodic Table.	
	Rub	pidium is a solid at room temperature, 20 °C.	
	Pot	assium melts at 63 °C and reacts vigorously with water.	
	(i)	Suggest the melting point of rubidium.	
		°C	[1]
	(ii)	Compare the reactivities of rubidium and of potassium with cold water.	
			.[1]
(c)	Ехр	plain the use of chlorine in water purification.	
			[1]

(d)	The	reaction between sodium and chlorine is exothermic.
	Sod	lium chloride is formed in this reaction.
	(i)	State what is meant by exothermic.
		Use ideas about energy transformations in your answer.
		[2]
	(ii)	Suggest one substance that reacts safely with dilute hydrochloric acid to form sodium chloride.
		[4]

9 Fig. 9.1 shows a crane carrying a load.

The crane is floating in the sea on a calm day.

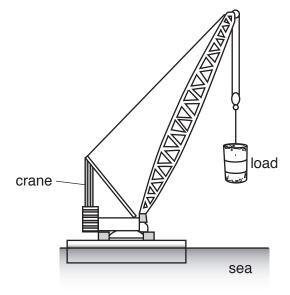


Fig. 9.1

- (a) (i) The load is stationary.
 - On Fig. 9.1 draw two force arrows to show the vertical forces acting on the load. [2]
 - (ii) One of the forces acting on the load is called *tension*.

Name the other force acting on the load.

_____[1]

- **(b)** The crane lifts the load vertically upwards from the sea bed to a position above the sea surface.
 - Fig. 9.2 shows a speed-time graph for the load during this operation.

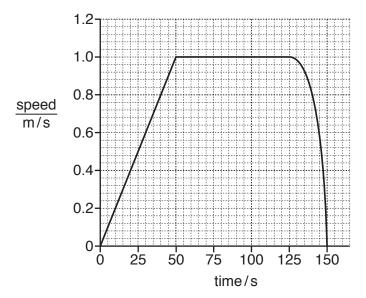


Fig. 9.2

(i)	Use terms from this list to	complete the statements below	V.	
	changing acceleration	constant acceleration	constant speed	
	Between 0s and 50s the lo	oad travels with		
	Between 50s and 125s the			
	Between 125s and 150s to	he load travels with		
				[1]
(ii)	The load reaches the sea	surface after 125s.		
	Use Fig. 9.2 to calculate the	ne depth of the sea from the se	ea bed to the sea surface.	
	Show your working.			
		depth of sea =		. m [2]
(iii)	The total work done by the	e crane in 150 s is 2000 000 J.		
	Calculate the average pow	ver output of the crane during t	his time.	
	State the formula you use	and show your working.		
	formula			
	working			
		power output =		W [2]

(c)	The load being lifted by the crane is a container full of sea water.
	The volume inside the container is $5000\mathrm{dm^3}$. The density of sea water is $1025\mathrm{kg/m^3}$.
	Calculate the mass of sea water being lifted.
	State the formula you use and show your working.
	formula
	working
	mass = kg [3]
	mass – kg [o]

21

BLANK PAGE

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

		2 :	He	helium 4	10	Ne	neon	20	18	Ar	argon	40	36	궃	krypton	84	54	Xe	xenon	98	Rn	radon			
	=>				6	ш	fluorine	61	17	Cl	chlorine	35.5	35	ğ	bromine	80	53	Н	iodine 127	85	Αţ	astatine			
	5				80	0	oxygen	16	16	ഗ	sulfur	32	34	Se	selenium	79	52	<u>a</u>	tellurium 128	84	Ъ	molod –	116		livermorium -
	>				7	z	nitrogen	41	15	۵	phosphorus	31	33	As	arsenic	75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥				9	ပ	carbon	7.7	4	S	silicon	28	32	Ge	germanium	73	20	Sn	tin 119	82	Pp	lead 207	114	Fl	flerovium -
	=				2	В	poron	11	13	Ρl	aluminium	27	31	Ga	gallium	20	49	In	indium 115	81	<i>1</i> L	thallium 204			
													30	Zu	zinc	65	48	පි	cadmium 112	80	Hg	mercury 201	112	ű	copemicium
												•	29	Co	copper	64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group													28	Z	nickel	59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium -
Gro													27	රි	cobalt	59	45	뫈	rhodium 103	77	'n	iridium 192	109	Μ	meitnerium -
		- :	I	hydrogen 1									26	Fe	iron	99	44	R	ruthenium 101	92	Os	osmium 190	108	Нs	hassium
					,								25	Mn	manganese	55	43	ည	technetium	75	Re	rhenium 186	107	Bh	bohrium
						pol		ass					24	ပ်	chromium	52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name	relative atomic mass					23	>	vanadium	51	41	q N	niobium 93	73	<u>ra</u>	tantalum 181	105	Op	dubnium
						ato	-	reig					22	ï	titanium	48	40	Zr	zirconium 91	72	Ŧ	hafnium 178	104	R	rutherfordium -
								_					21	Sc	scandium	45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium	מ	12	Mg	magnesium	24	20	Ca	calcium	40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium -
	_				က	:=	lithium		7	Na	sodium	23	19	¥	potassium	39	37	Вb	rubidium 85	55	Cs	caesium 133	87	ŗ	francium -

_			_		
7.1	Γſ	lutetium 175	103	۲	lawrencium -
		ytterbium 173			_
69	H	thulium 169	101	Md	mendelevium -
89	ш	erbium 167	100	Fm	fermium -
29	운	holmium 165	66	Es	einsteinium –
99	ò	dysprosium 163	86	ŭ	californium -
92	Q L	terbium 159	97	Æ	berkelium —
64	gq	gadolinium 157	96	Cm	curium -
63	Ш	europium 152	92	Am	americium -
62	Sm	samarium 150	94	Pn	plutonium -
61	Pm	promethium -	93	ď	neptunium -
09	PN	neodymium 144	92	\supset	uranium 238
59	Ā	praseodymium 141	91	Ра	protactinium 231
28	Ce	cerium 140	06	Ч	thorium 232
22	Гa	lanthanum 139	88	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

4 2018 | May/Jun | Variant 3 | 0653_s18_qp_43

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	${f Subtopic}$	Page
1	a(i)	Biology	Plant nutrition	71
1	a(ii)	Biology	Plant nutrition	71
L	b(i)	Biology	Organisms and their environment	72
	b(ii)	Biology	Organisms and their environment	72
L	c(i)	Biology	Organisms and their environment	73
Ĺ	c(ii)	Biology	Organisms and their environment	73
2	a(i)	Chemistry	Electrochemistry	74
2	a(ii)	Chemistry	Electrochemistry	74
2	b	Chemistry	Electrochemistry	74
2	c(i)	Chemistry	Metals	74
2	c(ii)	Chemistry	Metals	74
3	a(i)	Physics	Motion, forces and energy	75
3	a(ii)	Physics	Motion, forces and energy	75
3	a(iii)	Physics	Motion, forces and energy	75
3	b(i)	Physics	Motion, forces and energy	76
3	b(ii)	Physics	Motion, forces and energy	76
3	c(i)	Physics	Waves	76
3	c(ii)	Physics	Waves	77
4	\mathbf{a}	Biology	Reproduction	78
4	b	Biology	Reproduction	78
4	\mathbf{c}	Biology	Reproduction	78
5	a(i)	Chemistry	Atoms, elements and compounds	79
5	a(ii)	Chemistry	Atoms, elements and compounds	79
5	b(i)	Chemistry	Atoms, elements and compounds	79
5	b(ii)	Chemistry	Atoms, elements and compounds	79
5	b(iii)	Chemistry	Atoms, elements and compounds	80
5	c	Chemistry	Experimental techniques and chemical analysis	80
6	\mathbf{a}	Physics	Thermal physics	81
6	b(i)	Physics	Thermal physics	82
6	b(ii)	Physics	Thermal physics	82
7	a(i)	Biology	Gas exchange in humans	83
7	a(ii)	Biology	Gas exchange in humans	83
7	b(i)	Biology	Gas exchange in humans	83
7	b(ii)	Biology	Gas exchange in humans	84
7	c	Biology	Gas exchange in humans	84
7	d	Biology	Transport in animals	84
8	a(i)	Chemistry	Organic chemistry	85
8	a(ii)	Chemistry	Organic chemistry	85
8	b(i)	Chemistry	Organic chemistry	85
8	b(ii)	Chemistry	Organic chemistry	85
8	b(iii)	Chemistry	Organic chemistry	85
8	c(i)	Chemistry	Organic chemistry	86
8	c(ii)	Chemistry	Atoms, elements and compounds	86
9	a	Physics	Electricity	87
9	b	Physics	Electricity	88
9	c	Physics	Waves	88

Created by: store.exampapermaker.com

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

Paper 4 (Exter			May/June 2018 1 hour 15 minutes
COMBINED SO	CIENCE		0653/43
CENTRE NUMBER		CANDIDATE NUMBER	
CANDIDATE NAME			

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows a diagram of a duckweed plant. Duckweed is found in lakes. The green leaves float on the top of the water and the roots reach down into the water.

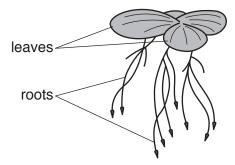


Fig. 1.1

(i)	Photosynthesis takes place in the leaves of the duckweed.	
	State the balanced symbol equation for photosynthesis.	
		.[2]
(ii)	Air is trapped between the cells in the leaves of the duckweed.	-[-]
	Suggest how this is an advantage to the survival of the duckweed.	
		.[2]

(b) An investigation is carried out to find the effect of increased concentration of nitrate ions on the growth of a duckweed population.

At the start, dishes **A** and **B** each contain lake water and six duckweed plants. Nitrate ions are added to dish **B** and both dishes are left for five days.

The results are shown in Fig. 1.2.

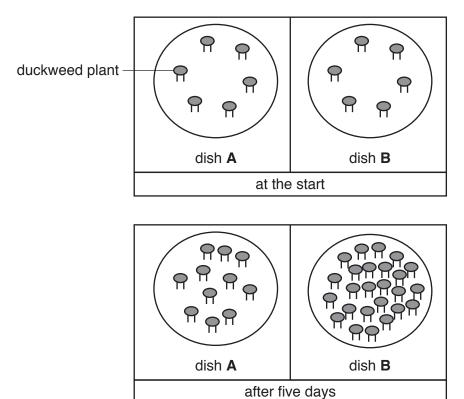


Fig. 1.2

(1)	and B after five days.	151165 A
(ii)	State a conclusion that can be drawn from the results seen in Fig. 1.2.	

(c)	Some fertiliser containing nitrate ions accidentally enters a lake which has a small number of duckweed plants on the surface.		
	(i)	Predict how the surface of the lake changes over the next few weeks.	
		[1]	
	(ii)	The plants beneath the surface of the lake die. The fish in the lake die too.	
		Describe the role of the lake bacteria in these events.	
		[3]	

2 (a) An aqueous solution of an ionic compound is electrolysed using inert electrodes.

The apparatus is shown in Fig. 2.1.

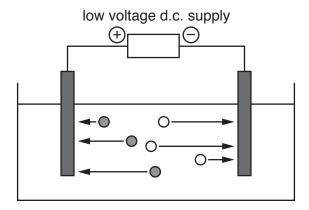


Fig. 2.1

- (i) On Fig. 2.1, add label lines to identify
 - one metal ion,
 - one non-metal ion,

Name this substance.

(ii)

- the electrolyte,

		• the anode.	[3]
	(ii)	State, in terms of electrons, what happens during electrolysis to	
		the positive ions,	
		the negative ions.	[2]
(b)	Soc	lium cannot be extracted by the electrolysis of aqueous sodium chloride.	
	Des	scribe how sodium is extracted from sodium chloride.	
			[2]
(c)	Iron	is obtained from iron ore in the blast furnace.	
	(i)	A substance is used in the blast furnace as a fuel to produce a high temperature.	

Name **one** reducing agent that reacts with iron oxide in the blast furnace to form iron.

3 Fig. 3.1 shows a small quadcopter (drone with four rotors) being operated by radio control.

Fig. 3.1

(a)	The drone is hovering above the ground with its rotors turning, but the drone is not moving
	Fig. 3.1 shows one of the forces acting on the drone.

(i)	On Fig. 3.1 draw an arrow for a second force needed if the drone is not moving.	[1]
(ii)	The radio control is used to stop the rotors turning.	
	Describe the resulting motion of the drone.	
		[2]
(iii)	Give a reason for your answer to (a)(ii) in terms of forces.	
		[1]

(b)	The drone has a mass of $5\mathrm{kg}$. It takes off from the ground and climbs vertically upwards to a height of $50\mathrm{m}$.		
	(i)	Calculate the gravitational potential energy gained by the drone.	
		(gravitational field strength, $g = 10 \mathrm{N/kg}$)	
		State the formula you use, show your working and give the unit of your answer.	
		formula	
		working	
		potential energy gained =unit[3]	
	(ii)	The drone is powered by batteries that drive electric motors to turn the rotors.	
		Complete the sequence of energy changes as the drone takes off and climbs to a height of $50\mathrm{m}$ above the ground.	
		energy	
		—► energy	
		—▶ energy	
		→ gravitational potential energy [2]	
(c)	The	radio control sends radio signals to control the drone.	
	(i)	State the type of wave that includes radio waves.	
		[1]	

(ii)	The radio signals used travel at $3.0 \times 10^8 \text{m/s}$ and have a frequency of $35 \times 10^6 \text{Hz}$.		
	Calculate the wavelength of these radio waves.		
	State the formula you use and show your working.		
	formula		
	working		
	TO] cm.		
	wavelength = m [2		

4 Fig. 4.1 shows a wind-pollinated flower.

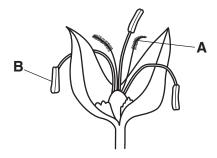


Fig. 4.1

(a)	Name structures A and B and explain how they make the flower suited to wind pollination	n.
	A	
	explanation	
	В	
	explanation	
		[4
(b)	All parts of the flower in Fig. 4.1 are pale green.	
	Suggest why bright colours are not needed in these flowers.	
		[1
(c)	The plant which produces the flower in Fig. 4.1 reproduces by sexual reproduction.	
	Define the term sexual reproduction.	
		[2

5 (a) The electronic structure of an atom of element **E** is shown in Fig. 5.1.

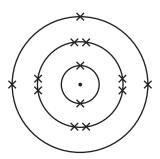


Fig. 5.1

	(i)	Use Fig. 5.1 to deduce the atomic number of element E .	
		Explain how the information in Fig. 5.1 is used.	
		atomic number	
		explanation	
			 [1]
	(ii)	Use the Periodic Table on page 20 to name element E .	
			[1]
b)	An	atom of chlorine is represented by:	
		³⁷ ₁₇ C <i>l</i>	
	(i)	State the mass number and the number of neutrons in this atom.	
		mass number	
		number of neutrons	[2]
	(::\	The electronic structure of this store of chloring is 0.0.7	[4]
	(ii)	The electronic structure of this atom of chlorine is 2, 8, 7.	
		Complete Fig. 5.2 to show the electronic structure of a chloride ion.	

Fig. 5.2 [1]

	(iii)	Explain why chlorine is shown in the Periodic Table, but sodium chloride is not.	
		[
(c)	An a	aqueous solution is tested to find out if chloride ions are present.	.1
	Des	cribe the test and state the positive result.	
	test		
	resu	ılt	 [2]

6 Fig. 6.1 shows ice cubes being added to a drink at 25 °C to cool the drink down.



Fig. 6.1

(a) Fig. 6.2 shows a graph of the temperature change in the drink with time after the ice cubes are added.

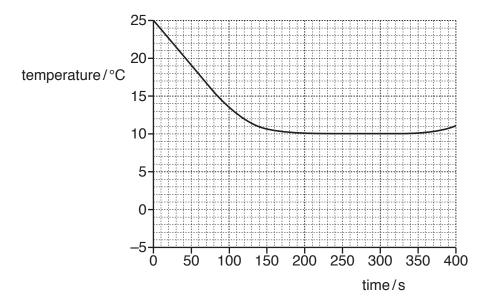


Fig. 6.2

The ice cubes are at a temperature of $-5\,^{\circ}\text{C}$ when they are added to the drink. The melting point of ice is $0\,^{\circ}\text{C}$.

On Fig. 6.2, sketch a graph to represent the temperature change of the water molecules that start in the ice cubes over the same time. [3]

(D)	warmer liquid come up to the surface where the ice is floating.				
	(i)	State the name of the method of thermal energy transfer that is happening as the colc liquid sinks, and warmer liquid rises.			
		[1]			
	(ii)	Explain why this circulation of liquid occurs as the ice melts.			
		[1]			

7 (a) Fig. 7.1 shows a diagram of the human gas exchange system.

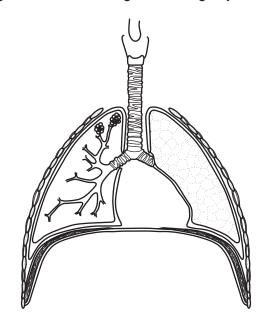


Fig. 7.1

On Fig. 7.1 use label lines to identify

(i) the larynx, [1]

(ii) a bronchiole. [1]

(b) Fig. 7.2 shows a diagram of an alveolus in the lungs.

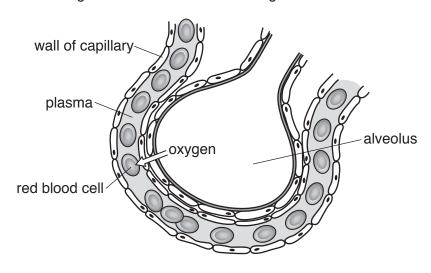


Fig. 7.2

(i) Describe **two** features of a gas exchange surface which are visible in Fig. 7.2.

 1.

 2.

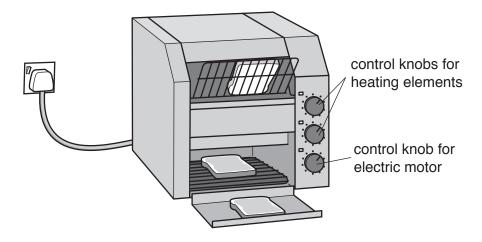
	(ii)	Oxygen diffuses into the blood at the alveoli.
		Explain why oxygen diffuses from the alveoli into the blood.
		[1]
(c)	Des	cribe how the gas exchange system is protected by mucus and cilia.
	mud	cus
	cilia	
		[2]
(d)		blood leaving the heart from the left ventricle has a greater pressure than the blood ring the right ventricle.
	Ехр	lain why this difference in pressure is needed.
		[2]

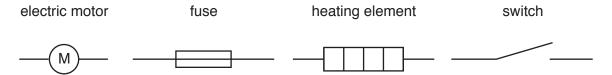
Petrole	um is a fossil fuel.
(a) (i)	Name two other fossil fuels.
	1
	2
	[1]
(ii)	Name the industrial process used to separate the substances in petroleum.
	[1]
(b) The	e structures of two hydrocarbon molecules are shown in Fig. 8.1.
	н н н н н н н
	H H H H H H H
	A B
	Fig. 8.1
(i)	Construct the balanced symbol equation for the complete combustion of hydrocarbon A .
	[2]
(ii)	
(ii)	State the formula of hydrocarbon B .
	[1]
(iii)	State which of these two hydrocarbons has the higher boiling point.
	Explain your answer.
	hydrocarbon
	explanation
	[2]

(c)	The	formula of hydrocarbon ${\bf C}$ is ${\bf C_2H_4}$.
	(i)	Name the process used to manufacture hydrocarbon ${\bf C}$ from larger hydrocarbon molecules.
		[1]
	(ii)	Draw the dot-and-cross diagram to show the bonding electrons in a molecule of hydrocarbon ${\bf C}.$
		C C

[2]

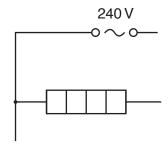
9 Fig. 9.1 shows an electric toaster used for toasting bread slices in a hotel dining room.




Fig. 9.1

The two heating elements inside, one to toast each side of the bread, are connected in parallel. They are each controlled by a switch.

An electric motor carries the bread slices on a moving rack between the heating elements. The motor is controlled by a third switch and is connected in parallel with the heating elements.


The plug at the end of the cable has a fuse inside, and is plugged into a 240 V mains supply.

(a) The circuit symbols for each of these components used in the toaster circuit are:

Use the information about the toaster to draw a circuit diagram for the toaster.

The circuit diagram has been started for you.

	19
(b)	The two heating elements are each rated at 240 V, $1.2\mathrm{kW}$. The electric motor is rated at 240 V, $100\mathrm{W}$. The plug has a 10 A fuse fitted.
	Show by calculation that the fuse in the plug is not adequate when both heating elements and the motor are in operation.
	Show your working.
	[3]
(c)	A smoke alarm is fitted in the dining room in case the toaster causes a fire.
	When it goes off, the smoke alarm has to make a loud high-pitched sound that everyone can hear. The highest frequency of sound some older residents can hear is 5 kHz below the top of the normal human hearing range.
	Suggest a frequency for the high-pitched sound from the smoke alarm that all residents should be able to hear.
	Give a reason for your answer.
	suggested frequencykHz
	reason

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

[2]

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

radon	
astatine _	
polonium — 116	LV livermorium
bismuth 209	
207	F1
thallium 204	
mercury 201 112	Cn copernicium
gold 197 111	Rg roentgenium
platinum 195 110	DS darmstadtium
iridium 192 109	Mt meitnerium
osmium 190 108	HS hassium
rhenium 186 107	Bh bohrium
tungsten 184 106	Sg seaborgium
tantalum 181 105	DP dubnium
hafnium 178 104	Rf rutherfordium
89–103	actinoids
barium 137 88	Ra radium
caesium 133 87	Fr francium
	barium hafnlum tantalum tungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium asstatine 137 137 178 181 184 186 190 195 197 201 204 207 209 - - - 88 80-103 106 107 108 100 110 111 111 116 116 116

71	ŋ	Intetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	2	nobelium	ı
69	Tm	thulium	169	101	Md	mendelevium	ı
89	щ	erbium	167	100	Fm	fermium	I
29	운	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	ర్	californium	ı
9	Д	terbium	159	6	益	berkelium	I
64	Вd	gadolinium	157	96	Cm	curium	ı
63	Ш	europium	152	92	Am	americium	ı
62	Sm	samarinm	150	94	Pn	plutonium	ı
61	Pm	promethium	I	93	d d	neptunium	ı
09	PΝ	neodymium	144	92	\supset	uranium	238
59	Ą	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Т	thorium	232
22	Га	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

$5 \quad 2018 \mid Oct/Nov \mid Variant \ 1 \mid 0653_w18_qp_41$

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	$\operatorname{Subtopic}$	Page
1	a(i)	Biology	Gas exchange in humans	92
1	a(ii)	$\operatorname{Biology}$	Gas exchange in humans	92
1	a(iii)	Biology	Gas exchange in humans	92
1	b	Biology	Reproduction	92
1	c(i)	Biology	Gas exchange in humans	93
1	c(ii)	Biology	Gas exchange in humans	93
1	c(iii)	Biology	Gas exchange in humans	93
1	c(iv)	Biology	Gas exchange in humans	93
2	a(i)	Chemistry	Atoms, elements and compounds	94
2	a(ii)	Chemistry	Atoms, elements and compounds	94
2	a (iii)	Chemistry	Atoms, elements and compounds	94
2	b(i)	Chemistry	Electrochemistry	94
2	b(ii)	Chemistry	Electrochemistry	95
2	c	Chemistry	Electrochemistry	95
3	a(i)	Physics	Motion, forces and energy	96
}	a(ii)	Physics	Motion, forces and energy	96
, }	b(i)	Physics	Motion, forces and energy	97
}	b(ii)	Physics	Motion, forces and energy	97
,	b(iii)	Physics	Motion, forces and energy	97
, }	b(iv)	Physics	Motion, forces and energy	98
, 1	a(i)	Biology	Organisms and their environment	99
		Or .		99
	a(ii)	Biology	Organisms and their environment	
ŀ	b	Biology	Organisms and their environment	99
	c	Biology	Organisms and their environment	99
	a(i)	Chemistry	Acids, bases and salts	100
	a(ii)	Chemistry	Acids, bases and salts	100
	b(i)	Chemistry	Atoms, elements and compounds	100
	b(ii)	Chemistry	Atoms, elements and compounds	100
•	c(i)	Chemistry	The Periodic Table	100
Ó	c(ii)	Chemistry	The Periodic Table	100
i	${ m d}$	Chemistry	${ m Metals}$	101
i	a	Physics	Thermal physics	102
	b(i)	Physics	Thermal physics	102
5	b(ii)	Physics	Thermal physics	102
i	c(i)	Physics	Waves	103
i	c(ii)	Physics	Waves	103
,	\mathbf{a}	$\operatorname{Biology}$	Plant nutrition	104
•	b	Biology	Plant nutrition	104
,	c(i)	Biology	Plant nutrition	104
7	c(ii)	Biology	Plant nutrition	104
,	d(i)	Biology	Plant nutrition	105
7	d(ii)	Chemistry	Chemistry of the environment	105
}	a	Chemistry	Organic chemistry	106
3	b	Chemistry	Organic chemistry	106
3	c(i)	Chemistry	Organic chemistry	107
3	c(ii)	Chemistry	Organic chemistry	107
)	a(i)	Physics	Electricity	109
,)	a(ii)	Physics	Electricity	109
)	b(i)	Physics	Electricity	109
)	b(ii)	Physics	Electricity	109
)	b(iii)	Physics	Electricity	109

 ${\bf Created\ by:\ store.exampaper maker.com}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMBINED SC	October/Nov	0653/41
CENTRE NUMBER	CANDIDATE NUMBER	
CANDIDATE NAME		

October/November 2018
1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 shows a diagram of an alveolus.

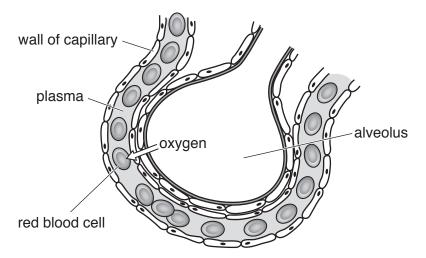


Fig. 1.1

	(1)	alveolus during gas exchange.	(1)
	(ii)	Explain why oxygen molecules diffuse from the alveolus into the blood.	
			.[1]
	(iii)	Describe two ways in which the structure of the alveolus in Fig. 1.1 makes it suitable gas exchange.	for
		1	
		2	
(b)	Des	scribe how a growing baby in the uterus of a pregnant woman obtains glucose.	[2]

(c) Fig. 1.2 shows apparatus which is used to study the contents of cigarette smoke. A pump draws air through the apparatus.

When the cigarette is lit, the smoke produced travels through the apparatus.

Fig. 1.2

	FIg. 1.2	
(i)	The limewater turns milky.	
	Explain why this happens.	
		[1]
(ii)	Tar from the cigarette is left on the cotton wool.	
	Describe one effect of tar on the gas exchange system.	
		[1]
(iii)	Cigarette smoke damages the cilia that line the airway.	
	Explain why this is harmful.	
		[2]
(iv)	The lit cigarette also produces carbon monoxide gas.	
	Explain why this is a harmful gas when inspired.	
		[2]

2	(a) (i	i)	Name the type of bonding in a water molecule.
			[1
	(ii	i)	Describe how electrons are involved in the bonds in a water molecule.
			[1
	(iii	i)	Draw a dot-and-cross diagram of a water molecule.

H O H

[2]

(b) A student dissolves copper chloride in water.

Show all of the outer shell electrons.

He then passes an electric current through the aqueous copper chloride using the apparatus shown in Fig. 2.1.

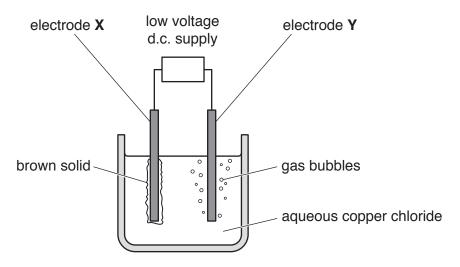


Fig. 2.1

(i)	Name electrode X and electrode Y .	
	electrode X	
	electrode Y	
		[2

	(ii)	During this process particles move to the electrodes. A brown solid and gas bubble form at the electrodes.	es
		Identify the particles	
		1. moving to electrode X ,	
		2. moving to electrode Y.	
			 [2]
(c)	Pred	dict the electrode products when an electric current is passed through molten lead oxide	Э.
	prod	duct at negative electrode	
	prod	duct at positive electrode	
			/

3 Fig. 3.1 shows a train made up of a steam engine and a passenger coach.

Fig. 3.1

(a) The train is travelling at a constant speed along a level track. Fig. 3.2 shows the four forces W, X, Y and Z acting on the train.

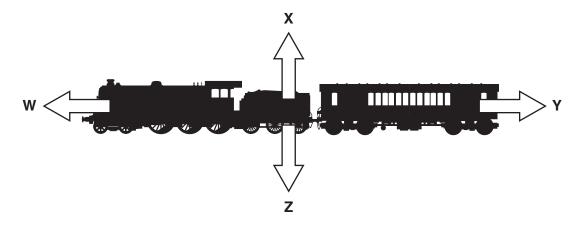
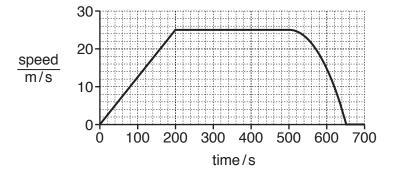


Fig. 3.2

(i) Name force Z.


.....[1]

(ii) The force arrows on Fig. 3.2 do not show the sizes of the forces.

State whether or not the driver has made force W equal in size to force Y.

Explain your answer.

(b) Fig. 3.3 shows a speed–time graph of the train as it travels between two stations.

Fig. 3.3 0653/41/O/N/18

© UCLES 2018

(i)	Force W in Fig. 3.2 is 200 000 N when the engine is pulling the train at 25 m/s.
	Calculate the useful work done by the engine while the train is travelling at 25m/s in the journey shown in Fig. 3.3.
	State the formula you use, show your working and state the unit of your answer.
	formula
	working
	work done = unit [3]
(ii)	Describe the motion of the train after 500 s until it stops.
	[2]
(iii)	Use Fig. 3.3 to calculate the distance, in km, travelled by the train in the first 200s of its journey.
	Show your working.
	distance =km [2]

(iv)	After 500s on this journey, the train travels a further 2.8km until it stops at the next station.
	Calculate the total distance in kilometres between the two stations.
	Show your working.
	total distance =km [1]

4 Fig. 4.1 shows an aquatic food web.

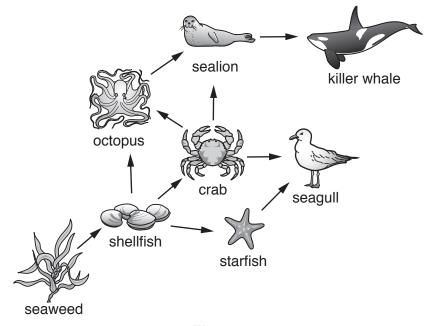


Fig. 4.1

The food web in Fig. 4.1 is made from interconnected food chains.

(a) (i) Write the food chain, contained in Fig. 4.1, which has the greatest number of trophic levels.

[2]

[2]

	(ii)	Suggest why the food chain you have written in (a)(i) is unusual.
		[1]
(b)		emical energy is lost at each trophic level in a food chain. One reason for this is respiration ne cells of the organisms.
		two uses of the energy released by respiration in the bodies of all of the organisms wn in Fig. 4.1.
	1	
	2	[2]
(c)		scribe two other ways in which energy is wasted when the killer whale eats the sealion.
	<u>-</u>	

(a)	Cal	Calcium sulfate is an insoluble salt.		
	(i)	Name two compounds that react together to form calcium sulfate.		
		1		
		2	 [2]	
		L	<u>.</u> ∠]	
	(ii)	Suggest the separation method that is used to separate an insoluble salt from a aqueous reaction mixture.	ЯN	
		Explain how this separation method removes the solid from the liquid.		
		method		
		explanation		
			2]	
(b)	Cal	cium is in Group II in the Periodic Table.		
	(i)	Complete the following sentences using words from the list.		
		Each word may be used once, more than once or not at all.		
		good high low poor		
		Calcium is a electrical conductor	or.	
		Calcium has a melting poir		
			[1]	
	(ii)	State the electronic structure of a calcium atom.		
		[1]	
(c)	Cae	esium is below potassium in Group I of the Periodic Table.		
	Pot	assium melts at 63 °C and it reacts rapidly with water.		
	Cae	esium is a solid at room temperature (25°C).		
	(i)	Compare the rate of the reaction between caesium and water with the rate of reaction between potassium and water.	on	
		[1]	
	(ii)	Suggest the melting point of caesium.		
	` '			

(d)	Describe the reaction, if any, which occurs when copper is mixed with aqueous potassiu chloride.	m
	Explain your answer.	
	reaction	
	explanation	
	г	
	l	ij

6 Fig. 6.1 shows a liquid-in-glass thermometer at room temperature.

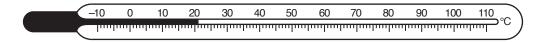


Fig. 6.1

(a)	State the property of a liquid that is used in a thermometer when measuring temperature.
	[1]

(b) Table 6.1 gives a list of the melting points and boiling points of five substances that are used in liquid-in-glass thermometers.

Table 6.1

substance	melting point /°C	boiling point /°C
ethanol	-114	78
gallium	30	2403
glycol	-12	198
mercury	-39	357
water	0	100

(i)	Ammonia has a melting point of -78 °C and a boiling point of -33 °C.
	Explain why ethanol would be the most suitable for use in a liquid-in-glass thermometer to measure both the melting point and the boiling point of ammonia.
	[1]
(ii)	Explain why a thermometer that uses liquid gallium has to be kept in a warm container, well above room temperature.

(c) An infra-red thermometer measures temperature in a different way. The wavelength of the infra-red radiation emitted by a hot body changes with temperature.

An infra-red thermometer measures the wavelengths of infra-red radiation emitted and converts these to temperature readings.

(i) The wavelength of the infra-red radiation emitted decreases as the temperature of the hot body increases.

Predict what happens to the frequency of the infra-red radiation as the temperature of the hot body increases.

Explain your answer.

prediction	
explanation	
	[2]

(ii) In the infra-red thermometer, the radiation is focused onto the detector by a thin converging lens.

On Fig. 6.2 complete the ray diagram to show how this happens.

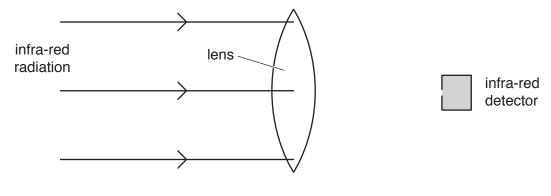


Fig. 6.2

[1]

- 7 A student is investigating photosynthesis in an aquatic plant.
 - (a) Complete the balanced symbol equation for photosynthesis.

(b) Fig. 7.1 shows the apparatus that the student uses in the investigation.

after a few hours

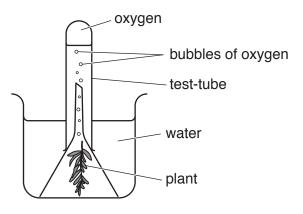


Fig. 7.1

The test-tube is full of water at the start. The apparatus is placed on a laboratory bench and left for a few hours.

Explain why the water in the test-tube moves downwards in the test-tube in Fig. 7.1.

______[1]

(c) The investigation is repeated in conditions of much greater light intensity. The apparatus is left for the same length of time as before.

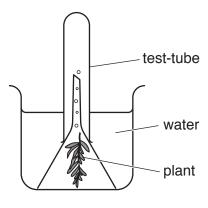


Fig. 7.2

(i) On Fig. 7.2 draw a line to suggest the new level of water in the test-tube. [1]

(ii) Explain your answer to (c)(i).

 11

(d) (i	i)	Explain why acid rain reduces the rate of photosynthesis in plants.
		[41]
(ii	i)	Describe two measures that can be taken to reduce acid rain.
		1
		2[2]

8 Useful substances are obtained from petroleum using the processes shown in Fig. 8.1.

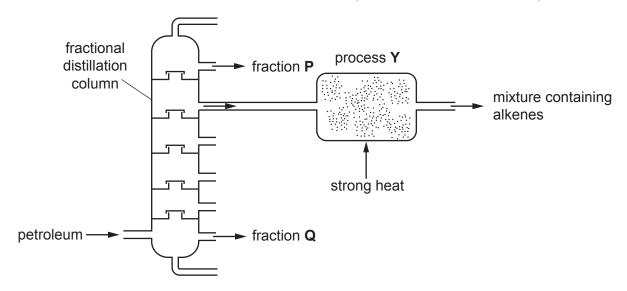


Fig. 8.1

(a)	between molecules in fraction P and in fraction Q .
	sizes of molecules
	intermolecular attractive forces
	[2
(b)	Fraction P contains propane, C ₃ H ₈ .
	Construct the balanced equation for the complete combustion of propane.
	[2

(c)	Process Y produces alkene molecules from large alkane molecules.		
	(i)	State how the molecular structure of alkenes differs from the molecular structure alkanes.	9 01
			[1]
	(ii)	Describe a chemical test that is used to distinguish between propane and propene.	
		State the observation for propane and for propene.	
		test	
		propane observation	
		propene observation	
			[2]

9 Fig. 9.1 shows a dishwasher (an electric dishwashing machine).

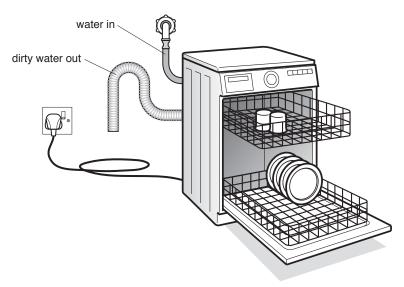


Fig. 9.1

The dishwasher uses electrical energy to

- · power a heater to heat the water used,
- power two motors, one to wash the dishes, and another to pump water out of the machine,
- light a small lamp to indicate that the heater is switched on.

The circuit symbols for a heater and a motor are:

Fig. 9.2 shows part of the circuit diagram for the dishwasher.

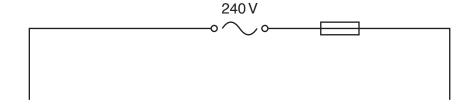


Fig. 9.2

Each of the motors and the heater has a switch in series	. The heater and each motor are turned
on at different times.	

(a)	(i)	Name the type of circuit connection needed.					
		[1]					
	(ii)	On Fig. 9.2 complete the circuit diagram for the dishwasher. [4]					
(b)	(i)	The heater is rated at 2.4 kW. The power consumption in the indicator lamp can be ignored.					
		Calculate the current through the heater.					
		State the formula you use and show your working.					
		formula					
		working					
		current = A [2]					
	(ii)	Each motor running at maximum power takes a current of 1.2A.					
	Find the maximum current taken from the 240 V mains when the heater and both are working at maximum power. The current in the indicator lamp can be ignored						
		current = A [1]					
	(iii)	Suggest a suitable value for the fuse in the main circuit.					
		Give a reason for your answer.					
		value = A					
		reason					

The Periodic Table of Elements

	IIIA	2	He H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	IIA				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	¥	astatine			
	IN				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъо	polonium	116	^	livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>.</u>	bismuth 209			
	Λ				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	90	S	tin 119	82	В	lead 207	114	Εl	flerovium -
	≡				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group											28	z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium –
Gro											27	ပိ	cobalt 59	45	牊	rhodium 103	77	'n	iridium 192	109	Μţ	meitnerium -
		-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						loc	SSI				24	ర	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	QN	niobium 93	73	<u>a</u>	tantalum 181	105	Op	dubnium –
						ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
								-			21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium
	_				3	:=	lithium 7	#	Na	sodium 23	19	×	potassium 39	37	В	rubidium 85	55	Cs	caesium 133	87	Ŧ	francium —

71	Γn	Intetium	175	103	בֿ	lawrencium	I
70	Υp	ytterbium	173	102	8 N	nobelium	I
69	Tm	thulium	169	101	Md	mendelevium	ı
89	ш	erbium	167	100	Fm	fermium	ı
29	운	holmium	165	66	Es	einsteinium	ı
99	Š	dysprosium	163	86	ರ	californium	ı
65	Д	terbium	159	26	Ř	berkelium	I
64	РĠ	gadolinium	157	96	S	curium	I
63	En	europium	152	92	Am	americium	I
62	Sm	samarium	150	94	Pn	plutonium	I
61	Pm	promethium	ı	93	ď	neptunium	ı
09	PN	neodymium	144	92	\supset	uranium	238
59	Ŗ	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Т	thorium	232
22	Гa	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

$6 - 2018 \mid { m Oct/Nov} \mid { m Variant} \,\, 2 \mid 0653 _ { m w} 18 _ { m qp} \, _42$

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	$\operatorname{Subtopic}$	Page
1	a(i)	Physics	Motion, forces and energy	113
1	a(ii)	Physics	Space physics	113
1	b(i)	Physics	Thermal physics	114
1	b(ii)	Physics	Thermal physics	114
1	c(i)	Physics	Motion, forces and energy	115
1	c(ii)	Physics	Motion, forces and energy	115
1	c(iii)	Physics	Motion, forces and energy	116
2	a(i)1	Chemistry	Acids, bases and salts	117
2	a(i)2	Chemistry	Acids, bases and salts	117
2	a(ii)	Chemistry	Chemical reactions	117
2	a(iii)	Chemistry	Chemical reactions	117
2	b	Chemistry	Chemical energetics	117
2	c(i)	Chemistry	$\operatorname{Stoichiometry}$	118
2	c(ii)	Chemistry	Experimental techniques and chemical analysis	118
3	a	Biology	Reproduction	120
3	b	Biology	Reproduction	120
3	\mathbf{c}	Biology	Transport in plants	121
3	d(i)	Biology	Transport in plants	122
3	d(ii)	Biology	Transport in plants	122
4	a	Biology	Transport in animals	123
4	b	Biology	Transport in animals	123
4	c(i)	Biology	Reproduction	124
4	c(ii)	Biology	Reproduction	124
4	c(iii)	Biology	Reproduction	124
5	a(i)	Chemistry	Atoms, elements and compounds	125
5	a(ii)	Chemistry	Atoms, elements and compounds	125
5	b(i)	Chemistry	Organic chemistry	125
5	b(ii)	Chemistry	Organic chemistry	126
5	c	Chemistry	Organic chemistry	126
5	d	Chemistry	Atoms, elements and compounds	126
6	a	Physics	Motion, forces and energy	$\frac{12}{127}$
6	b	Physics	Motion, forces and energy	127
6	c	Physics	Thermal physics	127
6	d(i)	Physics	Waves	128
6	d(ii)	Physics	Waves	128
7	a	Biology	Organisms and their environment	129
7	b	Biology	Respiration	$\frac{129}{129}$
7	c(i)	Biology	Organisms and their environment	130
7	c(ii)	Biology	Organisms and their environment	130
8	a	Chemistry	Electrochemistry	131
8	b(i)	Chemistry	The Periodic Table	132
8	b(ii)	Chemistry	Electrochemistry	132
8	c(i)	Chemistry	Metals	132 132
8	c(ii)	Chemistry	Metals Metals	$\frac{132}{132}$
9		Physics	Metals Electricity	$\frac{132}{133}$
9	a b	Physics Physics		133
		Physics Physics	Electricity	133
9	c(i)	Physics Physics	Electricity	$134 \\ 134$
9	c(ii)	т пуысь	Electricity	104

 ${\bf Created\ by:\ store.exampaper maker.com}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME	
CENTRE NUMBER	CANDIDATE NUMBER
COMBINED SCIENCE Paper 4 (Extended)	0653/42 October/November 2018
Candidates answer on the Question Paper.	1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

No Additional Materials are required.

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 Fig. 1.1 shows a farm tractor pulling a trailer.

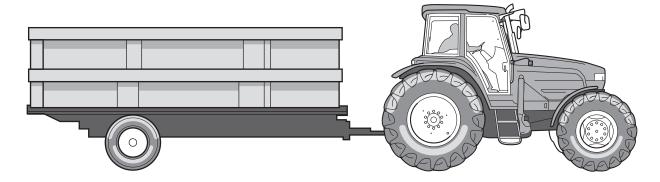


Fig. 1.1

(a) The tractor and trailer are moving across a level field. Fig. 1.2 shows the four forces W, X, Y and Z acting on the trailer.

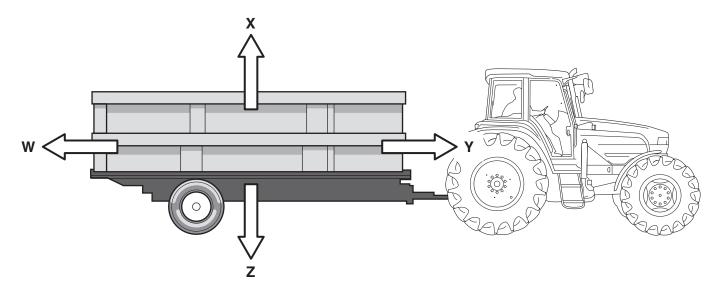


Fig. 1.2

(i)	State the letter corresponding to the gravitational force acting on the trailer.	
		[1]
(ii)	The tractor and trailer are moving at a constant speed.	
	Force W has a value of 2000 N.	
	State the value of force Y. Explain your answer.	
	force Y = N	
	explanation	
		[2]

(b) The tractor leaves the trailer on the field and drives to the farmyard.

Fig. 1.3 shows a speed-time graph of the tractor as it travels from the field to the farmyard.

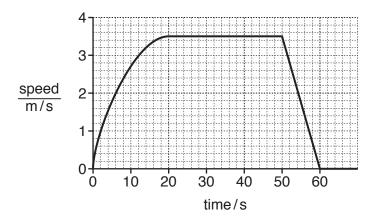


Fig. 1.3

- (i) On Fig. 1.3, label with a letter **C** a point in the journey when the tractor is travelling with constant acceleration. [1]
- (ii) The tractor travels 46 m in the first 20 s of this journey.

Use this information, and information from the graph in Fig. 1.3, to calculate the distance from the field to the farmyard.

Show your working.

distance = m [3]

(c)		e tractor, without the trailer, requires a force of 1500 N to move a distance of 50 m at stant speed.
	(i)	Calculate the useful work done on the tractor when it moves 50 m at this constant speed.
		State the formula you use and show your working.
		formula
		working
		work done = J [2]
	(ii)	The power input to the tractor is 25 kW for 15 s as the tractor moves the distance of 50 m.
		Calculate the energy used by the tractor in this time.
		State the formula you use and show your working.
		formula
		working
		WOLKING
		energy =

(iii)	Use your answers to (c)(i) and (c)(ii) to can a distance of 50 m.	alculate the efficiency of the tractor as it moves
	State the formula you use and show your	working.
	formula	
	working	
		efficiency =[2]

2 Magnesium chloride is a soluble salt. It is made when dilute hydrochloric acid reacts with magnesium carbonate.

Magnesium carbonate is insoluble in water.

(a)	(i)	Excess magnesium carbonate powder is mixed with dilute hydrochloric acid.
		Suggest methods for
		1. removing unreacted magnesium carbonate from the reaction mixture,
		2. obtaining solid magnesium chloride from the solution.
		[2]
	(ii)	The reaction is repeated using the same mass of larger pieces of magnesium carbonate instead of powder.
		Describe the effect of this change on the rate of the reaction.
		[1]
	(iii)	Describe the effect of using the same volume of more concentrated hydrochloric acid on the rate of this reaction.
		Explain your answer.
		effect
		explanation
		[2]
(b)	Wh	en the magnesium carbonate reacts with dilute hydrochloric acid, the temperature rises.
		te the name given to chemical reactions that cause the temperature to rise, and explain observation.
	Use	ideas about energy changes in your answer.
	read	ction
	exp	lanation
		[2]

colourless salt solution are formed.

(c) When magnesium carbonate reacts with dilute hydrochloric acid, a colourless gas and a

(i)	Complete the balanced equation for this reaction.	
	MgCO ₃ + + + +	[2]
(ii)	Describe a test for aqueous chloride ions.	
	State the result that shows chloride ions are present.	
	test	
	result	
		 [2]

BLANK PAGE

3	Pol	len is used by flowering plants to reproduce by sexual reproduction.	
	(a)	Pollen has a haploid nucleus.	
		State what is meant by the terms	
		1. haploid,	
		2. nucleus.	
			[2]

(b) Table 3.1 shows some statements about flowers.

Put a tick (✓) next to **all** statements that are characteristics of wind-pollinated flowers.

Table 3.1

statement	tick (✓) if correct
small green or brown flowers	
produce nectar	
anthers inside the flower	
stigma outside the flower	
light, smooth pollen grains	
produce scent	

[3]

(c) The apparatus shown in Fig. 3.1 is used to compare the transpiration rates of twigs (small branches) from two different species of trees, **A** and **B**. The twigs are of a similar size and they have the same number of leaves.

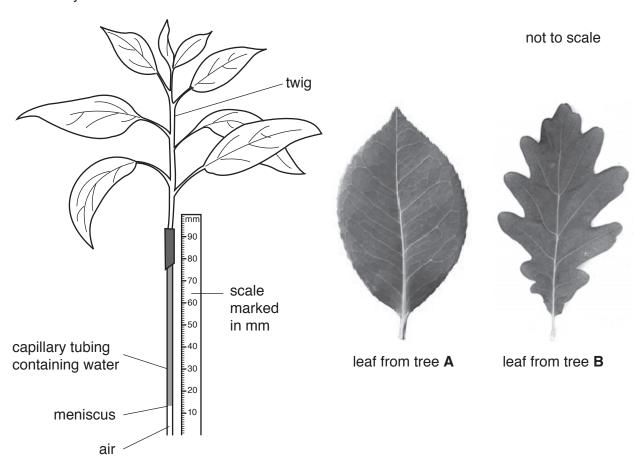


Fig. 3.1

As water vapour is lost from the leaves by transpiration, water is drawn up the tube and the meniscus (the bottom of the column of water) moves upwards.

Readings are taken of the position of the meniscus every minute for five minutes.

Fig. 3.2 shows a graph of the results for tree **A** and for tree **B**.

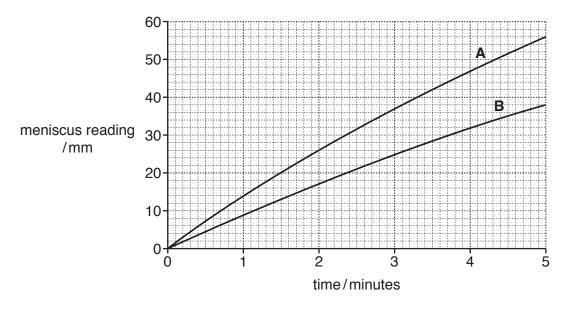


Fig. 3.2

Suggest two differences between the leaves of trees ${\bf A}$ and ${\bf B}$ that could explain the difference in the rate of transpiration.

	1		
	2		
			 [2]
(d)		experiment is repeated with the twig from tree ${\bf B}$ later on in the day when the humidit air has increased.	y of
	(i)	On Fig. 3.2 draw a line to show a possible graph of the results. Label this line ${\bf C}$.	[1]
	(ii)	Explain your response to (d)(i).	

4 Fig. 4.1 is a diagram of the internal structure of the heart.

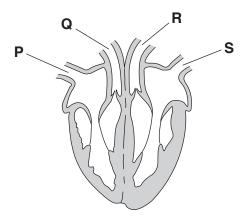


Fig. 4.1

(a)	The letters P, Q, R	and S on Fig. 4.	1 show the blood	d vessels ente	ring and leaving	the heart.
	State the letters wh	ich identify the v	eins.			
						[1]
(b)	Use words or phras	ses from the list t	o complete the f	following sente	ences.	
	Each word or phras	se may be used o	once, more than	once or not a	all.	
	greater	lower	atrium	left	right	
		shorter	ventricle	valve		
	Blood flows to the	lungs from the		side of	the heart. Blood	I flowing to
	the lungs has a		pressure than	n blood leaving	g the	

side of the heart. This is because the blood travels a distance to the

[3]

© UCLES 2018 0653/42/O/N/18

lungs.

(c) Fig. 4.2 shows a fetus (growing baby) in a mother's uterus during pregnancy.

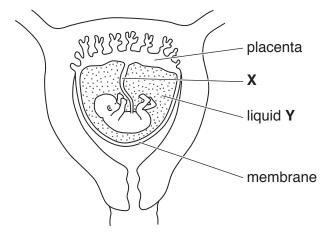


Fig. 4.2

	9	
(i)	Name X and Y shown on Fig. 4.2.	
	x	
	Υ	
		[2
(ii)	When the membrane breaks, liquid \mathbf{Y} is lost. Occasionally this happens too early in pregnancy.	the
	Suggest and explain how this affects the fetus.	
		[2
(iii)	The fetus obtains the materials it needs from the placenta.	
	State one substance which diffuses	
	1. from the mother's blood into the placenta,	
	2. from the placenta into the mother's blood.	
		 [2
		16

5 (a) Ethane, C_2H_6 , is an alkane.

(i)	State the type	of bonding	between	atoms in	a molecule	of ethane
,		0 0				

.....[1]

(ii) Complete the structure of a molecule of ethane.

H—C

[2]

(b) Petroleum is separated into useful products by the process shown in Fig. 5.1.

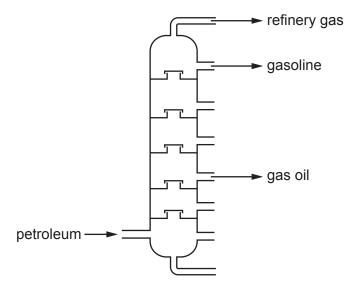


Fig. 5.1

(i) Name this process.

_____[1]

	(ii)	Compare the molecules in gasoline to the molecules in gas oil.	
		Use ideas about boiling point ranges, molecular sizes and intermolecular attractive forces in your answer.	ve
			3]
(c)	Ethe	ene, C ₂ H ₄ , is an alkene.	
	Nan	ne the process used to make ethene from fractions obtained from petroleum.	
			1]
(d)	The	atomic number of carbon is 6.	
	Stat	te the electronic structure of a carbon atom.	
			[1]

	property.
	Explain, in terms of the motion of molecules and the distances and forces between them, why this property is different between liquids and solids.
(b)	When a liquid is heated, it expands.
	Name a measuring instrument that makes use of this property of liquids.
	[1]
(c)	Fig. 6.1 shows a hot drink in a cup left to cool down.
	Fig. 6.1
	The statements below describe ways in which the drink loses thermal energy as it cools.
	Put a tick (✓) in the box alongside any correct statement.
	Put a cross (X) in the box alongside any incorrect statement.
	conduction through the sides and base of the cup
	convection as air above the cup is heated and the warm air moves upwards
	ultraviolet radiation in all directions
	evaporation as the faster molecules in the liquid escape from the surface of the liquid

[2]

		elescopes to stu magnetic radiation	-		nely hot bodies th	nat lose energy
(i) E	xplain why st	ars can only lose	e energy by	radiation, and	not by conduction	or convection
						[1
(ii) Fi	g. 6.2 shows	the electromag	netic spectr	um.		
		incre	easing wave	length		
gamma	X-rays	ultraviolet	visible	infra-red	microwaves	radio waves
			Fig. 6.2			
St	ars emit all t	types of radiation	n.			
TI	ne energy ca	arried by electror	nagnetic wa	ves increases	as the frequency	increases.
E	xplain why g	amma radiation	enables sta	rs to lose ene	rgy most rapidly.	
						[1

7 Fig. 7.1 shows a simplified version of the carbon cycle. The element carbon is present in different molecules as it moves through the cycle.

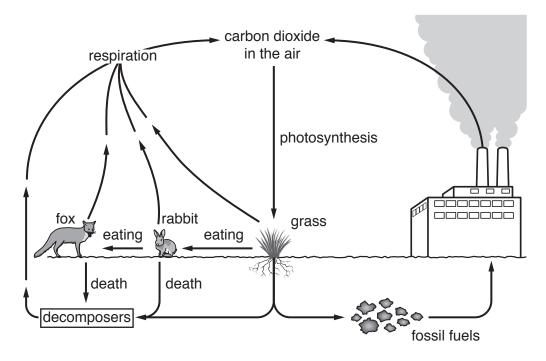


Fig. 7.1

a)	The element carbon is transferred from carbon dioxide in the atmosphere to the grass.	
	Suggest a compound in the grass which contains carbon.	
		[1]
b)	State the balanced symbol equation for respiration.	
		[2

(c)	A food chain from Fig. 7.1 is shown.		
		grass — → rabbit — → fox	
	(i)	The arrows represent the transfer of chemical energy.	
		Describe two ways in which energy is lost during the transfer between the rabbit and the fox.	
		1	
		2[2]	
	(ii)	Describe how the element carbon is released as carbon dioxide from the body of the fox after it dies.	

8 (a) A teacher tries to use the apparatus shown in Fig. 8.1 to demonstrate the electrolysis of lead(II) bromide.

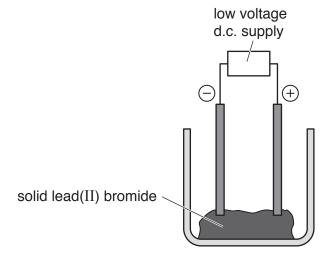


Fig. 8.1

Explain why this electrolysis does not work.	
Use ideas about physical states and ions in your answer.	
	•
T ^o	2

(b) A student electrolyses aqueous copper bromide using the apparatus shown in Fig. 8.2.

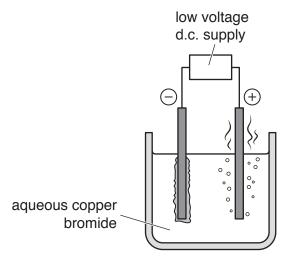


Fig. 8.2

	Fig. 6.2
(i)	In this process metallic copper is formed.
	Copper is a transition metal. It forms coloured compounds.
	Describe one other property of a transition metal.
	[1]
(ii)	Identify the ions that move to each electrode to form the product.
	anode
	cathode[2]
	[-]
Iron	is extracted from iron(III) oxide, $\mathrm{Fe_2O_3}$, in the blast furnace.
(i)	State the fuel used in the blast furnace.
	[1]
(ii)	State one substance that reduces iron(III) oxide in the blast furnace.

(c)

9 Fig. 9.1 shows a circuit diagram for an investigation into how the resistance of a lamp changes with the current in the lamp.

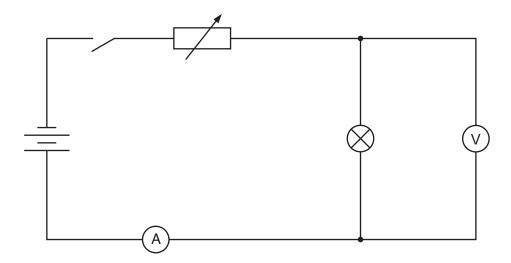


Fig. 9.1

(a)	Explain why the variable resistor has been included in the circuit.
	[4]
	[1]

(b) Table 9.1 shows some results from the investigation.

Table 9.1

experiment	voltmeter reading/V	ammeter reading/A	resistance of lamp/ Ω
1	6.0	0.54	11
2	4.0	0.46	8.7
3	3.0	0.40	7.5
4	2.0	0.32	6.3

The lamp becomes less bright as the voltage reading decreases from 6.0 V to 2.0 V. Explain why this happens.

(c)	(i)	On Fig. 9.1 add a second identical lamp in parallel with the first.	[1]
	(ii)	Experiment 5 is now carried out with the second identical lamp in the circuit in para with the first lamp.	ıllel
		The total current in the circuit is now 0.76A.	
		State the current in the first lamp. Give a reason for your answer.	
		current = A	
		reason	
			[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2	¥	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	86	R	radon			
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ă	bromine 80	53	Н	iodine 127	85	At	astatine -			
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium –	116	_	livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥				9	O	carbon 12	14	Si	silicon 28	32	ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -
	≡				2	М	boron 11	13	Ρſ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204			
											30	Zn	zinc 65	48	8	cadmium 112	80	롼	mercury 201	112	S	copernicium -
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group											28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium –
Ģ					1						27	රි	cobalt 59	45	格	rhodium 103	77	٦	iridium 192	109	Μ̈́	meitnerium -
		-	I	hydrogen 1							26	Pe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Η̈́	hassium -
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					_	loq	ass				24	ဝ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>n</u>	tantalum 181	105	В	dubnium -
						atc	ler ler				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	껖	rutherfordium -
											21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_				8	:=	lithium 7	1	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	Ļ	francium -

71	Γn	lutetium	6/1	103	۲	lawrencium	ı
	Υp					_	I
69	H	thulium	169	101	Md	mendelevium	I
89	ы	erbium	16/	100	Fm	fermium	I
29	유	holmium	165	66	Es	einsteinium	I
99	Δ	dysprosium	163	98	ŭ	californium	ı
65	Р	terbium	159	97	Ř	berkelium	ı
64	Gd	gadolinium	157	96	Cm	curium	ı
63	En	europium	797	92	Am	americium	I
62	Sm	samarium	150	94	Pn	plutonium	I
61	Pm	promethium	I	93	Ν D	neptunium	_
09	PZ	neodymium	144	92	\supset	uranium	238
69	Ā	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Ч	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	1

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).

7 | 2018 | Oct/Nov | Variant 3 | 0653_w18_qp_43

Topic & Sub-topic Index of Questions

No.	Sub Q.	Topic	$\operatorname{Subtopic}$	Page
1	a	Biology	Cells	138
1	b(i)	Biology	Reproduction	138
L	b(ii)	Biology	Reproduction	139
2	a(i)	Chemistry	Atoms, elements and compounds	140
?	a(ii)	Chemistry	Atoms, elements and compounds	140
2	a(iii)	Chemistry	Experimental techniques and chemical analysis	140
?	a(iv)	Chemistry	Chemical energetics	140
	b(i)	Chemistry	Atoms, elements and compounds	141
2	b(ii)	Chemistry	Atoms, elements and compounds	141
3	a(i)	Physics	Motion, forces and energy	142
3	a(ii)	Physics	Motion, forces and energy	142
3	b(i)	Physics	Motion, forces and energy	143
;	b(ii)	Physics	Motion, forces and energy	143
;	c	Physics	Motion, forces and energy	143
;	d	Physics	Motion, forces and energy	144
Į	\mathbf{a}	Biology	Gas exchange in humans	146
1	b(i)	Biology	Plant nutrition	146
1	b(ii)	Biology	Respiration	147
1	c	Chemistry	Chemistry of the environment	147
)	a(i)	Chemistry	${ m Metals}$	148
)	a(ii)	Chemistry	Chemical reactions	149
ó	b(i)	Chemistry	${ m Metals}$	149
5	b(ii)	Chemistry	Chemical reactions	149
5	c(i)	Chemistry	${ m Metals}$	149
5	c(ii)	Chemistry	${ m Metals}$	149
6	a	Physics	Thermal physics	150
3	b(i)	Physics	Thermal physics	150
3	b(ii)	Physics	Thermal physics	151
3	c(i)	Physics	Waves	152
3	c(ii)	Physics	Waves	152
7	a(i)	Biology	Transport in animals	153
7	a(ii)	Biology	Transport in animals	153
7	a(iii)	Biology	Transport in animals	153
7	b(i)	Biology	Respiration	153
7	b(ii)	Biology	Respiration	153
7	b(iii)	Biology	Respiration	153
3	a(i)	Chemistry	Organic chemistry	154
3	a(ii)	Chemistry	Organic chemistry	154
3	a(iii)	Chemistry	Organic chemistry	154
3	b(i)	Chemistry	Organic chemistry	155
8	b(ii)	Chemistry	Organic chemistry	155
9	a(i)	Physics	Electricity	156
9	a(ii)	Physics	Electricity	157
9	b	Physics	Electricity	157

 ${\bf Created\ by:\ store.exampaper maker.com}$

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
COMBINED SCIEN	CE		0653/43
Paper 4 (Extended)		Oct	ober/November 2018
			1 hour 15 minutes
Candidates answer	on the Question Paper.		
No Additional Materi	als are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 (a) Fig. 1.1 is a diagram of a cell which lines the human airway.

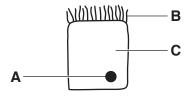


Fig. 1.1

Table 1.1 shows the names and functions of parts of the cell shown in Fig. 1.1.

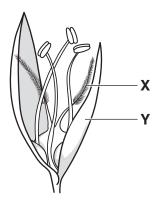
Complete Table 1.1.

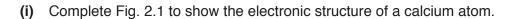
Table 1.1

letter	name	functions
Α	nucleus	controls the activities of the cell
В		
С		

[4]

(b) Fig. 1.2 shows a drawing of a wind-pollinated flower.




Fig. 1.2

(i)	Describe how the structure of X is adapted to its function.
	[O

(11)	Structure Y is not brightly coloured.	
	Explain why a bright colour is not necessary for structure Y.	
		[2]

			4	
2	(a)	Car	rbon dioxide is a product of the thermal decomposition of calcium carbonate.	
		(i)	Complete the dot-and-cross diagram of a molecule of carbon dioxide to show the boelectrons between atoms.	onding
			O C	
				[2]
		(ii)	Name this type of chemical bonding.	
				[1]
	((iii)	Describe a chemical test for carbonate ions in an aqueous solution.	
			State the observations that show a positive result.	
			test:	
			step 1	
			step 2	
			observations	
				[2]
	((iv)	The thermal decomposition of calcium carbonate is an endothermic change.	
			Describe what is meant by <i>endothermic</i> .	
			Use ideas about chemical energy and heat (thermal energy) in your answer.	

(b) The atomic number of calcium is 20.

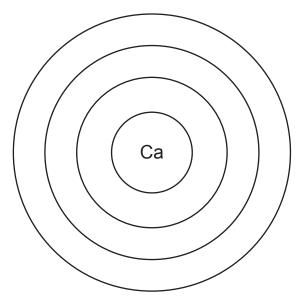


Fig. 2.1

[1]

(ii) The symbol of a calcium ion is Ca^{2+} .

 Describe, in terms of electrons, how this ion is formed from a calcium atom.
 [O

3 Fig. 3.1 shows a man pushing a shopping trolley.

Fig. 3.1

Fig. 3.2 shows a speed–time graph of the trolley as the man pushes it to the checkout.

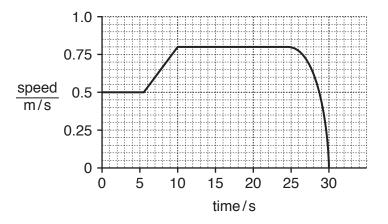
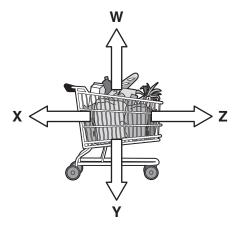


Fig. 3.2


- (a) (i) On Fig. 3.2, label with a letter **C** a point in the journey when the trolley is travelling with constant acceleration. [1]
 - (ii) The trolley travels 20 m to the checkout.

Use information from the graph to calculate the average speed of the trolley on this journey.

Show your working.

average speed = m/s [2]

(b) Fig. 3.3 shows the four forces acting on the trolley as it moves.

Fig. 3.3		
	(i)	State the letter corresponding to the force exerted by the man on the trolley.
		[1]
	(ii)	Use Fig. 3.2 to describe how the relative sizes of forces ${\bf X}$ and ${\bf Z}$ change between 20 s and 30 s.
		[2]
(c)	The man provides the energy to push the trolley to the checkout. The trolley and its cor have a mass of 20 kg.	
	Calculate the kinetic energy of the trolley between 10s and 25s.	
	State the formula you use and show your working.	
	forn	nula
	wor	king

kinetic energy = J [2]

(d)	As the trolley is moved to the checkout, 2400 J is required to do work against forces resisting the motion.
	The efficiency of the man's body providing this energy to the trolley is 20%.
	Calculate the total energy used by the man's body to do this work.
	State the formula you use and show your working.
	formula
	working
	energy =J [2]

BLANK PAGE

4 Rainforest is often cleared for agriculture by cutting down the trees and burning them. This process is called 'slash and burn'. The burning of the trees produces a smoky haze made from very small carbon particles suspended in the air.

Fig. 4.1

(a)		ggest how the gas exchange system of a human could be affected by inspiring a large ume of the air containing the carbon particles.
		[1]
(b)	(i)	Some of the suspended carbon particles land on the leaves of crops and trees covering them with a thin layer of carbon.
		Suggest and explain how this layer of carbon affects the function of chlorophyll in the leaves.
		[3]

	(ii)		centration of aking place.	oxygen in the a	tmosphere dec	reases in th	e area where sl	ash and
		Suggest	two reasons	why this happe	ns.			
		1						
		2						
								[2]
(c)		me humaı ease.	n activities ca	ause the conce	entration of car	bon dioxide	in the atmosp	ohere to
		e words or ironment.	•	n the list to com	plete the sente	ences about	how this can a	ffect the
	Eac	ch word or	phrase may	be used once, n	nore than once	or not at all		
	ac	cid rain	argon	gamma	global w	arming	infra-red	
		n	nethane	nitrogen	oxygen	ultravio	let	
	Gre	enhouse	gases such	n as carbon o	dioxide and .			absorb
				radiation give	n out from the E	Earth.		
	Whe	en the c	oncentration	of carbon diox	ide in the atr	nosphere ir	ncreases, more	of this
	radi	iation is	absorbed ar	nd eventually	released into	the atmos	phere. This in	creases
								[3]

5 (a) A student investigates the reactivities of four metals, A, B, C and D.

He uses pieces of metal which are the same size.

A gas is produced when the metals react with dilute hydrochloric acid.

He uses the apparatus shown in Fig. 5.1 to measure the time taken to collect 25 cm³ of the gas.

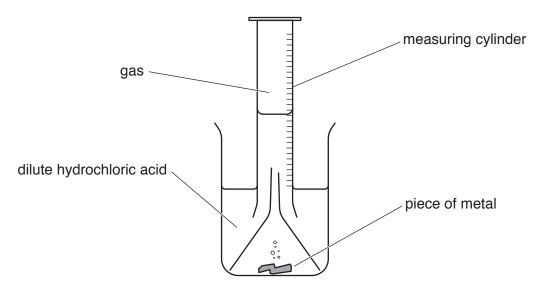


Fig. 5.1

The results of the investigation are shown in Table 5.1.

Table 5.1

metal	time/s
Α	25
В	115
С	73
D	305

(i) Using letters A, B, C and D, state the order of reactivity of these metals, from most reactive to least reactive.

 most reactive		
₩		
least reactive		

[1]

	(ii)	Describe and explain the effect of increasing the temperature on the rate of a reaction	١.
		Use ideas about particle movement and particle collisions in your answer.	
		effect	
		explanation	
			[3]
(b)	Iron	is extracted from iron ore by reduction in a blast furnace.	
	Lim	estone is added to the blast furnace to separate impurities from the iron.	
	(i)	Name two other raw materials which are added to the blast furnace.	
		1	
		2	
			[2]
	(ii)	Explain what is meant by <i>reduction</i> .	
			.[1]
(c)	Aluı	minium cannot be extracted from its ore by reduction in a blast furnace.	
	(i)	Explain why reduction in a blast furnace cannot be used to extract aluminium from ore.	its
			.[1]
	(ii)	Name the method of extraction of aluminium from its ore.	
			.[1]

6	(a)	The density of water, a liquid, is very different from the density of steam, a gas.	
		Explain in terms of distances and forces between molecules, and their motion, why density of water is so much greater than the density of steam.	/ the
			[3]

(b) Fig. 6.1 shows an insulated container of boiling water left to cool on a balance.

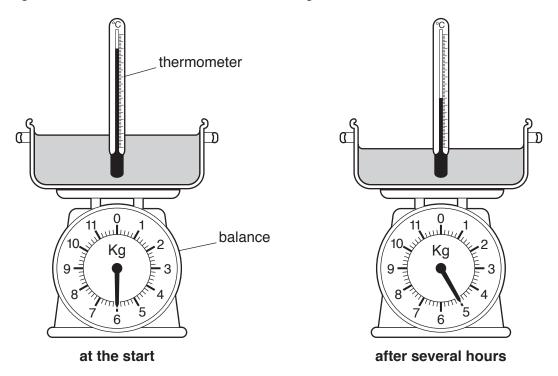


Fig. 6.1

After several hours, the reading on the scale of the balance is shown in Fig. 6.1.

(i)	Describe how the evaporation of water from the container is the cause of the coolin the water.	g of
		[2]

(ii) The experiment in Fig. 6.1 is repeated with the same volume of boiling water but using the insulated container shown in Fig. 6.2.

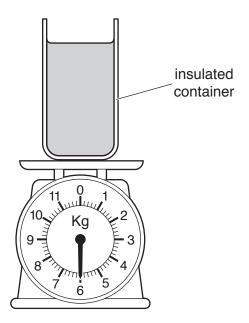


Fig. 6.2

Give a reason for your answer.

Predict how the results of the second experiment will differ in terms of temperature change **and** mass loss compared with the first experiment.

predictions	

(c) An observer is measuring the temperature of the water in the pan in (b). He says the thermometer looks bent where it goes into the water. He says the thermometer bulb is at X on Fig. 6.3.

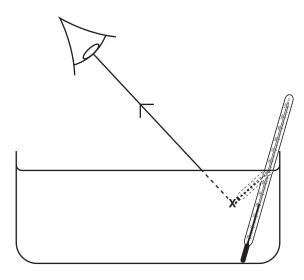


Fig. 6.3

(i)	Rays of light change direction when they pass through the surface of the water.
	Name this effect[1

(ii) Fig. 6.3 shows where the observer thinks the ray is coming from.

On Fig. 6.3 complete the ray diagram to show where the ray is actually coming from. [1]

7 (a) Fig. 7.1 shows the external structures of the heart.

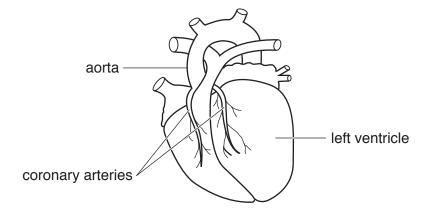
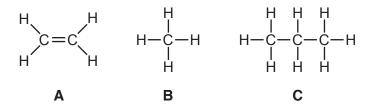



Fig. 7.1

(i)	Describe the function of the coronary arteries.
(ii)	Coronary heart disease (CHD) occurs when the coronary arteries become narrow. Describe what causes the narrowing of the arteries.
(iii)	Describe two ways in which a person can reduce the risk of developing CHD. 1
(b) Dur	2[2] ing exercise energy is released in the muscles by aerobic respiration.
(i)	State the balanced symbol equation for aerobic respiration. [2]
(ii)	State how the energy released by respiration is used by the muscles. [1]
(iii)	State two reasons why an increased heart rate is needed for respiration in the muscles during exercise.
	1
	2

8 Fig. 8.1 shows the structures of three hydrocarbon molecules, **A**, **B**, and **C**.

Fia. 8.1

		Fig. 8.1	
(a)	(i)	Name hydrocarbons A and B .	
		A	
		В	
			[2
	(ii)	Describe the changes, if any, that are observed when bromine water is added separate to samples of hydrocarbons ${\bf A}$ and ${\bf B}$.	tely
		A	
		В	
			[2
	(iii)	Deduce the balanced equation for the complete combustion of hydrocarbon C .	
			[2

(b) Hydrocarbon A is made in process Y, as shown in Fig. 8.2.

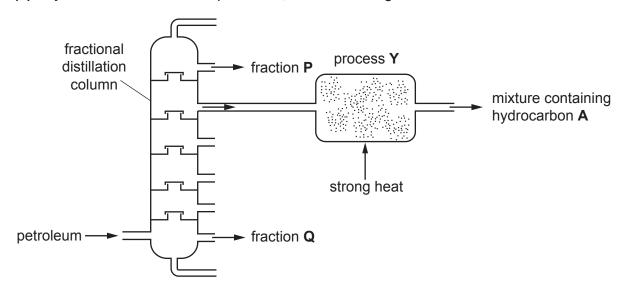


Fig. 8.2

[1
ular attractive
[2

9 Fig. 9.1 shows a display refrigerator for storing cold drinks in a shop.

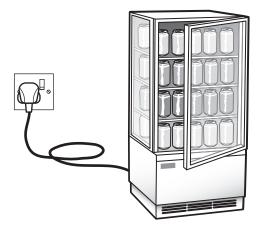


Fig. 9.1

The refrigerator uses electrical energy

- for a lamp to light up the inside of the refrigerator
- to power an electric motor to run the cooler in the refrigerator.

The circuit symbol for an electric motor is:

Fig. 9.2 shows part of the circuit diagram for the refrigerator.

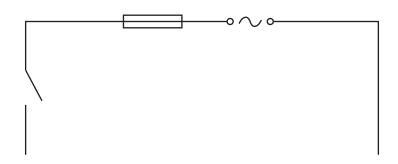


Fig. 9.2

- (a) When the shop is closed, the lamp is switched off, but the electric motor needs to continue to run the refrigerator to keep the contents cool.
 - (i) On Fig. 9.2 complete the circuit diagram for the refrigerator that will allow the lamp to be switched off while the electric motor remains on. [3]

	(ii)	Name the circuit component with the symbol $-\!\!\!\!-\!\!\!\!-\!\!\!\!-$
		[1]
(b)	The	e potential difference across the lamp is 240 V, and its power consumption is 40 W.
	The	potential difference across the motor is 240 V and its power consumption is 300 W.
	Cal	culate the total current from the supply through the refrigerator.
	Sta	te the formula you use and show your working.
	forn	nula
	wor	king
		current = A [3]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

		=	2	He	helium 4	10	Se	neon 20	18	Ā	argon 40	36	궃	knypton 84	54	Xe	xenon 131	98	R	radon				
		=>				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ă	bromine 80	53	Н	iodine 127	85	Αŧ	astatine -				
		5				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	8	Ро	molouium –	116	_	livermorium —	
		>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	: <u>.</u>	bismuth 209				
		≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	50	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium	
		=				2	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204				
									•			30	Zu	zinc 65	48	ပ္ပ	cadmium 112	80	βĤ	mercury 201	112	ű	copernicium -	
												29	D O	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -	
	dn											28	Z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -	
	Group											27	ပိ	cobalt 59	45	몬	rhodium 103	77	Ľ	indium 192	109	Μ	meitnerium -	
			-	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium -	
												25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —	
							loc	ISS				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -	
					Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	9 N	niobium 93	73	<u>a</u>	tantalum 181	105	Op	dubnium -	
							ato	rela				22	ı=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	峜	rutherfordium -	
													21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
		=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ва	barium 137	88	Ra	radium -	
		_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	ъ́	francium -	

71]	Intetium	175	103	۲	lawrencium	ı
					%	_	
⁶⁹ ŀ	Ξ	thulium	169	101	Md	mendelevium	I
89 L	ш	erbinm	167	100	Fn	fermium	1
29	9	holminm	165	66	Es	einsteinium	_
99 (S	dysprosium	163	86	Ç	californium	_
65 F	<u>Q</u>	terbium	159	97	BK	berkelium	-
64	5	gadolinium	157	96	Cm	curium	1
₆₃	Π	europium	152	92	Am	americium	_
62	S.	samarium	150	94	Pn	plutonium	1
ا 9	T	promethium	_	93	Ν D	neptunium	_
09	D N	neodymium	144	92	\supset	uranium	238
59	ĭ	praseodymium	141	91	Ра	protactinium	231
28 (<u>e</u>	cerium	140	06	Т	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

A Introduction to the Topical Questions Tracker: An Efficient Study Tool

A Topical Questions Tracker is a powerful tool, integrated as an appendix to Yearly Past Papers, enhancing the functionality of utilising Past Papers. This tool allows you to locate specific questions by topic, providing a much more efficient way to study for exams.

A.1 How the Topical Questions Tracker Works

The Topical Questions Tracker is organized according to the latest syllabus of the subject. Each topic includes a comprehensive list of all relevant questions from the yearly past papers. For each question, the tracker provides:

- The paper's code
- The question number
- The sub-question number (if applicable)
- The page number where the question is located, which is hyperlinked for easy navigation

By clicking on the linked page number, you can jump directly to the corresponding page in the document, making it quick and simple to find the exact question you're looking for.

A.2 Advantages of Topical Questions Trackers Over Traditional Past Papers

While traditional Topical Past Papers classify entire questions under a single topic, many questions contain sub-questions that may cover different topics. This can make it difficult to find specific practice material for a particular area of study.

The Topical Questions Tracker overcomes this limitation by categorizing each sub-question individually. This precise classification ensures that each part of the question is assigned to the appropriate topic, providing a more targeted and effective revision tool.

A.3 Efficient Navigation Tips

While the Topical Questions Tracker allows you to jump directly to specific questions by clicking on the linked page numbers, navigating back to the previous page to find the next question can be time-consuming and somewhat frustrating. To streamline this process, you can utilize the 'Previous View' and 'Next View' commands in Adobe Reader.

To access these commands, navigate to the menu and select View » Go to » Previous View or Next View. Alternatively, you can use the shortcut keys for quicker navigation:

• Previous View: ALT + Left Arrow

• Next View: ALT + Right Arrow

These commands enable you to seamlessly move back and forth between the last two pages visited, enhancing your study efficiency by minimizing unnecessary navigation steps.

B Topical Questions Tracker

B.1 Biology

B.1.1 Cells

```
0653 w18 qp 43 Question: 1 a Page: 138
```

B.1.2 Biological molecules

```
0653_m18_qp_42 Question: 7 c Page: 17
0653_s18_qp_41 Question: 1 a Page: 25
```

B.1.3 Plant nutrition

```
0653 \text{ m} 18 \text{ qp} 42
                         Question: 4 a
                                            Page: 11
0653 \text{ m}18 \text{ qp} 42
                         Question: 4 b(i)
                                               Page: 11
0653 \quad m18\_qp\_42
                         Question: 4 b(ii)
                                                Page: 11
0653 \text{ m} 18 \text{ qp} 42
                         Question: 4 c
                                            Page: 11
0653\_{\rm s}18\_{\rm q}p\_41
                        Question: 4 a(i)
                                              Page: 33
0653 \text{ s} 18 \text{ qp} 41
                        Question: 4 a(ii)
                                              Page: 33
0653 s18 qp_43
                        Question: 1 a(i)
                                              Page: 71
                        Question: 1 a(ii)
                                               Page: 71
0653 \text{ s} 18 \text{ qp} 43
0653 w18 qp 41
                         Question: 7 a
                                            Page: 104
0653 w18 qp 41
                         Question: 7 b
                                            Page: 104
                         Question: 7 c(i)
                                               Page: 104
0653_w18_qp_41
0653\_w18\_qp\_41
                         Question: 7 c(ii)
                                               Page: 104
0653 \text{ w}18 \text{ qp} 41
                         Question: 7 d(i)
                                               Page: 105
0653 \text{ w} 18 \text{ qp} 43
                         Question: 4 b(i)
                                               Page: 146
```

B.1.4 Human nutrition

B.1.5 Transport in plants

```
Question: 4 b(ii)
                                                Page: 33
0653 \text{\_s} 18 \text{\_qp} \text{\_} 41
0653 \text{ s} 18 \text{ qp} 42
                        Question: 1 b(i)
                                                Page: 47
0653 \text{ s} 18 \text{ qp} 42
                        Question: 1 b(ii)
                                                Page: 47
0653\_s18\_qp\_42
                        Question: 1 c
                                            Page: 47
0653\_w18\_qp\_42
                         Question: 3 c
                                             Page: 121
0653 w18 qp_42
                         Question: 3 d(i)
                                                Page: 122
                         Question: 3 d(ii)
                                                 Page: 122
0653 \text{ w}18 \text{ qp} 42
```

B.1.6 Transport in animals

```
0653 \text{ s} 18 \text{ qp} 42
                          Question: 4 d(ii)
                                                   Page: 53
0653 \text{ s} 18 \text{ qp} 43
                          Question: 7 d
                                               Page: 84
0653 \text{ w} 18 \text{ qp} 42
                           Question: 4 a
                                                Page: 123
0653\ w18\_qp\_42
                           Question: 4 b
                                                Page: 123
0653\_w18\_qp\_43
                           Question: 7 a(i)
                                                   Page: 153
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 7 a(ii)
                                                   Page: 153
                                                    Page: 153
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 7 a(iii)
```

B.1.7 Diseases and immunity

```
0653_m18_qp_42 Question: 7 b(i) Page: 16
0653_m18_qp_42 Question: 7 b(ii) Page: 16
0653_m18_qp_42 Question: 7 b(iii) Page: 16
```

B.1.8 Gas exchange in humans

```
0653 \text{ s} 18 \text{ qp} 42
                        Question: 4 a
                                            Page: 52
                        Question: 4 b
                                            Page: 52
0653 s18 qp_42
0653 \text{ s} 18 \text{ qp} 42
                        Question: 4 c
                                            Page: 53
0653 \text{ s} 18 \text{ qp} 43
                        Question: 7 a(i)
                                               Page: 83
0653 s18 qp_43
                        Question: 7 a(ii)
                                                Page: 83
0653 s18 qp_43
                        Question: 7 b(i)
                                               Page: 83
                        Question: 7 b(ii)
                                                Page: 84
0653 s18 qp_43
0653 \text{ s} 18 \text{ qp} 43
                        Question: 7 c
                                            Page: 84
0653 \text{ w}18 \text{ qp} 41
                         Question: 1 a(i)
                                                Page: 92
0653_w18_qp_41
                         Question: 1 a(ii)
                                                 Page: 92
0653 \text{w} 18 \text{qp} \text{4} 1
                         Question: 1 a(iii)
                                                 Page: 92
0653\_w18\_qp\_41
                         Question: 1 c(i)
                                                Page: 93
0653 \text{ w} 18 \text{ qp} 41
                         Question: 1 c(ii)
                                                 Page: 93
0653 \text{ w} 18 \text{ qp} 41
                         Question: 1 c(iii)
                                                 Page: 93
                         Question: 1 c(iv)
                                                 Page: 93
0653 \text{ w}18 \text{ qp} 41
                                             Page: 146
0653 \text{ w}18 \text{ qp} 43
                         Question: 4 a
```

B.1.9 Respiration

```
0653 \text{ s} 18 \text{ qp} 41
                         Question: 4 b(i)
                                                 Page: 33
0653 \text{ w}18 \text{ qp} 42
                          Question: 7 b
                                               Page: 129
0653 \text{w} 18 \text{qp} \text{4}3
                          Question: 4 b(ii)
                                                  Page: 147
0653\_w18\_qp\_43
                                                 Page: 153
                          Question: 7 b(i)
                          Question: 7 b(ii)
                                                   Page: 153
0653_w18_qp_43
0653 \text{w} 18 \text{qp} \text{4}3
                          Question: 7 b(iii)
                                                   Page: 153
```

B.1.10 Reproduction

```
0653\_m18\_qp\_42
                           Question: 1 a(i)
                                                   Page: 4
0653 m18 qp_42
                           Question: 1 a(ii)
                                                    Page: 4
0653\_m18\_qp-42
                           Question: 1 b(i)
                                                    Page: 4
0653 \text{ m} 18 \text{ qp} 42
                           Question: 1 b(ii)
                                                    Page: 4
0653 m18 qp_42
                           Question: 1 b(iii)
                                                     Page: 4
0653\_{\rm s}18\_{\rm q}p\_42
                                                  Page: 46
                          Question: 1 a(i)
0653 \text{ s} 18 \text{ qp} 42
                          Question: 1 a(ii)
                                                   Page: 46
0653 \text{\_s} 18 \text{\_qp} \text{\_42}
                          Question: 1 a(iii)
                                                    Page: 46
                                               Page: 78
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                          Question: 4 a
                          Question: 4 b
                                               Page: 78
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                          Question: 4 c
                                               Page: 78
0653 \text{ s} 18 \text{ qp} 43
```

```
0653 \text{ w}18 \text{ qp} 41
                           Question: 1 b
                                                 Page: 92
0653 \text{ w} 18 \text{ qp} 42
                           Question: 3 a
                                                 Page: 120
0653 \text{ w} 18 \text{ qp} 42
                           Question: 3 b
                                                 Page: 120
0653\ w18\_qp\_42
                           Question: 4 c(i)
                                                    Page: 124
0653 \quad w18\_qp\_42
                                                    Page: 124
                           Question: 4 c(ii)
0653 \text{w} 18 \text{qp} \text{42}
                           Question: 4 c(iii)
                                                     Page: 124
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 1 b(i)
                                                    Page: 138
0653 \text{ w}18 \text{ qp} 43
                           Question: 1 b(ii)
                                                    Page: 139
```

B.1.11 Organisms and their environment

```
0653_s18_qp_41
                        Question: 7 a(i)
                                                Page: 38
0653 \text{ s} 18 \text{ qp} 41
                        Question: 7 a(ii)
                                                Page: 38
                        Question: 7 b(i)
                                                Page: 38
0653_s18_qp_41
0653\_s18\_qp\_41
                        Question: 7 b(ii)
                                                Page: 38
0653\_{\rm s}18\_{\rm q}p\_42
                        Question: 7 a(i)
                                               Page: 58
0653 \text{ s} 18 \text{ qp} 42
                        Question: 7 a(ii)
                                                Page: 58
0653 s18 qp_42
                        Question: 7 a(iii)
                                                 Page: 58
0653\_{\rm s}18\_{\rm q}p\_42
                        Question: 7 b(i)
                                                Page: 58
                        Question: 7 b(ii)
                                                Page: 58
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp} 43
                        Question: 1 b(i)
                                                Page: 72
                                                Page: 72
0653 \text{ s} 18 \text{ qp} 43
                        Question: 1 b(ii)
0653 \text{ s} 18 \text{ qp} 43
                        Question: 1 c(i)
                                               Page: 73
0653 \text{ s} 18 \text{ qp} 43
                        Question: 1 c(ii)
                                                Page: 73
0653\ w18\_qp\_41
                         Question: 4 a(i)
                                                Page: 99
0653\_w18\_qp\_41
                         Question: 4 a(ii)
                                                 Page: 99
                                              Page: 99
0653 w18 qp 41
                         Question: 4 b
                         Question: 4 c
0653 \text{ w}18 \text{ qp} 41
                                              Page: 99
0653 \text{ w}18 \text{ qp} 42
                         Question: 7 a
                                              Page: 129
0653 \text{ w}18 \text{ qp} 42
                         Question: 7 c(i)
                                                Page: 130
0653 \text{ w} 18 \text{ qp} 42
                         Question: 7 c(ii)
                                                 Page: 130
```

B.2 Chemistry

B.2.1 Atoms, elements and compounds

```
0653 \text{ m}18 \text{ qp} 42
                           Question: 5 a(i)
                                                   Page: 12
0653\ m18\_qp\_42
                                                    Page: 12
                           Question: 5 a(ii)
0653 m18 qp_42
                           Question: 5 b
                                                Page: 12
0653\_{\rm s}18\_{\rm q}p\_41
                          Question: 2 c(i)
                                                  Page: 29
                                                  Page: 29
0653_s18_qp_41
                          Question: 2 c(ii)
0653\_{\rm s}18\_{\rm q}p\_41
                          Question: 5 a(ii)
                                                  Page: 34
0653 s18 qp_42
                          Question: 2 b(i)
                                                  Page: 49
                          Question: 2 b(ii)
                                                   Page: 49
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp} 42
                          Question: 2 c
                                               Page: 49
                          Question: 8 a(i)
                                                  Page: 60
0653 \text{ s} 18 \text{ qp} 42
                          Question: 8 a(ii)
0653 \text{ s} 18 \text{ qp} 42
                                                   Page: 60
0653\_{\rm s}18\_{\rm q}p\_43
                          Question: 5 a(i)
                                                  Page: 79
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                          Question: 5 a(ii)
                                                   Page: 79
                          Question: 5 b(i)
                                                  Page: 79
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                          Question: 5 b(ii)
                                                   Page: 79
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
0653 \text{ s} 18 \text{ qp} 43
                          Question: 5 b(iii)
                                                   Page: 80
0653 \text{ s} 18 \text{ qp} 43
                          Question: 8 c(ii)
                                                   Page: 86
0653 w18 qp 41
                           Question: 2 a(i)
                                                   Page: 94
0653 \text{ w}18\_\text{qp}\_41
                           Question: 2 a(ii)
                                                    Page: 94
0653\ w18\_qp\_41
                           Question: 2 a(iii)
                                                    Page: 94
0653 \text{ w}18 \text{ qp} 41
                           Question: 5 b(i)
                                                   Page: 100
```

```
0653 \text{ w}18 \text{ qp} 41
                           Question: 5 b(ii)
                                                    Page: 100
0653 \text{ w} 18 \text{ qp} 42
                           Question: 5 a(i)
                                                   Page: 125
0653 \text{ w} 18 \text{ qp} 42
                           Question: 5 a(ii)
                                                    Page: 125
0653\ w18\_qp\_42
                           Question: 5 d
                                                Page: 126
0653 \text{ w}18\_qp\_43
                           Question: 2 a(i)
                                                   Page: 140
                           Question: 2 a(ii)
0653 \text{w} 18 \text{qp} \text{4}3
                                                    Page: 140
                           Question: 2 b(i)
0653 \text{w} 18 \text{qp} \text{4}3
                                                   Page: 141
                           Question: 2 b(ii)
0653 \text{ w}18 \text{ qp} 43
                                                    Page: 141
```

B.2.2 Stoichiometry

```
0653\_w18\_qp\_42 Question: 2 c(i) Page: 118
```

B.2.3 Electrochemistry

```
0653_m18_qp_42
                         Question: 2 a(i)
                                                Page: 6
0653 m18 qp 42
                         Question: 2 a(ii)
                                                Page: 6
                        Question: 8 a(i)
                                               Page: 39
0653_s18_qp_41
0653 \text{ s} 18 \text{ qp} 41
                        Question: 8 a(ii)
                                               Page: 39
0653 \text{ s} 18 \text{ qp} 42
                                               Page: 55
                        Question: 5 b(i)
0653 s18 qp_42
                        Question: 5 b(ii)
                                               Page: 55
0653 s18 qp_42
                        Question: 5 b(iii)
                                                Page: 55
                        Question: 2 a(i)
                                               Page: 74
0653 s18 qp_43
0653 \text{ s} 18 \text{ qp} 43
                        Question: 2 a(ii)
                                               Page: 74
0653 \text{ s} 18 \text{ qp} 43
                        Question: 2 b
                                            Page: 74
0653 \text{w} 18 \text{qp} \text{4} 1
                                                Page: 94
                         Question: 2 b(i)
                                                Page: 95
0653 \text{ w}18 \text{ qp} 41
                         Question: 2 b(ii)
0653 \text{ w}18 \text{ qp} 41
                         Question: 2 c
                                             Page: 95
0653 \text{ w} 18 \text{ qp} 42
                         Question: 8 a
                                             Page: 131
0653 \text{ w} 18 \text{ qp} 42
                         Question: 8 b(ii)
                                                Page: 132
```

B.2.4 Chemical energetics

B.2.5 Chemical reactions

```
Question: 8 c(i)
                                              Page: 19
0653 \text{ m} 18 \text{ qp} 42
0653 m18 qp_42
                        Question: 8 c(ii)
                                              Page: 19
0653\_{\rm s}18\_{\rm q}p\_42
                                             Page: 54
                       Question: 5 a(i)
0653 s18 qp_42
                       Question: 5 a(ii)
                                              Page: 54
                       Question: 5 b(iv)
                                               Page: 55
0653 s18 qp_42
0653\_w18\_qp\_42
                        Question: 2 a(ii)
                                               Page: 117
                                               Page: 117
0653 \text{ w}18 \text{ qp} 42
                        Question: 2 a(iii)
0653 \text{ w}18 \text{ qp} 43
                        Question: 5 a(ii)
                                               Page: 149
0653 \text{ w}18 \text{ qp} 43
                        Question: 5 b(ii)
                                               Page: 149
```

B.2.6 Acids, bases and salts

```
0653_s18_qp_42 Question: 2 a(ii) Page: 48
0653_s18_qp_42 Question: 8 d(ii) Page: 61
```

B.2.7 The Periodic Table

```
0653 \quad m18\_qp\_42
                       Question: 2 c
                                         Page: 7
0653\_m18\_qp\_42
                       Question: 5 c
                                         Page: 12
0653 m18 qp_42
                       Question: 5 d(i)
                                            Page: 13
0653 m18 qp_42
                       Question: 5 d(ii)
                                            Page: 13
0653_s18_qp_41
                      Question: 8 c(i)
                                           Page: 40
                                           Page: 40
0653 \text{ s} 18 \text{ qp} 41
                      Question: 8 c(ii)
                      Question: 8 b(i)
                                           Page: 60
0653 s18 qp_42
0653\_s18\_qp\_42
                      Question: 8 b(ii)
                                           Page: 60
0653 \text{w} 18 \text{qp} \text{4} 1
                                           Page: 100
                       Question: 5 c(i)
                                            Page: 100
0653 \text{ w}18 \text{ qp} 41
                       Question: 5 c(ii)
0653 w18 qp 42
                       Question: 8 b(i)
                                           Page: 132
```

B.2.8 Metals

```
0653 m18 qp_42
                           Question: 2 b(i)
                                                    Page: 7
                           Question: 2 b(ii)
0653 m18 qp_42
                                                     Page: 7
                          Question: 2 a(i)
                                                   Page: 27
0653 \text{ s} 18 \text{ qp} 41
0653 	ext{ s}18 	ext{ qp} 	ext{ 41}
                          Question: 2 a(ii)
                                                    Page: 27
                                                   Page: 28
                          Question: 2 b(i)
0653 \text{\_s} 18 \text{\_qp} \text{\_} 41
0653\_{\rm s}18\_{\rm q}p\_41
                          Question: 2 b(ii)
                                                    Page: 28
0653\_{\rm s}18\_{\rm q}p\_41
                          Question: 2 b(iii)
                                                    Page: 28
0653\_{\rm s}18\_{\rm q}p\_41
                          Question: 8 b(i)
                                                   Page: 39
0653\_{\rm s}18\_{\rm q}p\_41
                          Question: 8 b(ii)
                                                    Page: 39
                                                    Page: 54
                          Question: 5 a(iii)
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp} 43
                          Question: 2 c(i)
                                                   Page: 74
0653 \text{ s} 18 \text{ qp} 43
                          Question: 2 c(ii)
                                                   Page: 74
0653_w18_qp_41
                           Question: 5 d
                                                 Page: 101
0653\_w18\_qp\_42
                           Question: 8 c(i)
                                                    Page: 132
0653 \text{w} 18 \text{qp} \text{42}
                                                    Page: 132
                           Question: 8 c(ii)
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 5 a(i)
                                                    Page: 148
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 5 b(i)
                                                    Page: 149
                           Question: 5 c(i)
                                                    Page: 149
0653 \text{w} 18 \text{qp} \text{4}3
0653 \text{ w}18 \text{ qp} 43
                           Question: 5 c(ii)
                                                    Page: 149
```

B.2.9 Chemistry of the environment

```
0653 \text{ m} 18 \text{ qp} 42
                           Question: 8 e(i)
                                                   Page: 19
0653 m18 qp 42
                           Question: 8 e(ii)
                                                    Page: 19
0653\_{\rm s}18\_{\rm q}p\_41
                                                  Page: 34
                          Question: 5 b(i)
0653 \text{ s} 18 \text{ qp} 42
                          Question: 7 c
                                               Page: 59
0653\_{\rm s}18\_{\rm q}p\_42
                          Question: 8 c
                                               Page: 60
                           Question: 7 d(ii)
0653 \text{w} 18 \text{qp} \text{4}1
                                                    Page: 105
                           Question: 4 c
                                                Page: 147
0653 \text{ w}18 \text{ qp} 43
```

B.2.10 Organic chemistry

```
0653 \text{ m} 18 \text{ qp} 42
                            Question: 8 d
                                                  Page: 19
0653 \text{ s} 18 \text{ qp} 41
                          Question: 5 a(i)
                                                   Page: 34
0653 \text{ s} 18 \text{ qp} 41
                          Question: 5 a(iii)
                                                     Page: 34
0653 \hspace{0.1cm} s18\_qp\_42
                          Question: 2 a(i)
                                                   Page: 48
0653\_{\rm s}18\_{\rm q}p\_43
                          Question: 8 a(i)
                                                   Page: 85
0653\_s18\_qp\_43
                          Question: 8 a(ii)
                                                    Page: 85
                                                   Page: 85
0653 s18 qp_43
                          Question: 8 b(i)
                                                    Page: 85
0653 \text{ s} 18 \text{ qp} \text{ 4} 3
                          Question: 8 b(ii)
                          Question: 8 b(iii)
                                                     Page: 85
0653 \text{ s} 18 \text{ qp } 43
0653 \text{ s} 18 \text{ qp} 43
                          Question: 8 c(i)
                                                   Page: 86
0653_w18_qp_41
                           Question: 8 a
                                                 Page: 106
0653 \text{ w}18\_\text{qp}\_41
                           Question: 8 b
                                                 Page: 106
0653 \text{w} 18 \text{qp} \text{4}1
                           Question: 8 c(i)
                                                    Page: 107
0653 \text{w} 18 \text{qp} \text{4}1
                           Question: 8 c(ii)
                                                    Page: 107
0653 \text{ w} 18 \text{ qp} 42
                           Question: 5 b(i)
                                                    Page: 125
0653\_w18\_qp\_42
                           Question: 5 b(ii)
                                                     Page: 126
0653 \text{ w}18 \text{ qp} 42
                           Question: 5 c
                                                 Page: 126
                           Question: 8 a(i)
                                                    Page: 154
0653 \text{ w}18 \text{ qp} 43
0653 \text{ w} 18 \text{ qp} 43
                           Question: 8 a(ii)
                                                     Page: 154
0653 \text{ w} 18 \text{ qp} 43
                           Question: 8 a(iii)
                                                     Page: 154
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 8 b(i)
                                                    Page: 155
                           Question: 8 b(ii)
0653 \text{w} 18 \text{qp} \text{4}3
                                                     Page: 155
```

B.2.11 Experimental techniques and chemical analysis

B.3 Physics

B.3.1 Motion, forces and energy

```
0653 \text{ m} 18 \text{ qp} 42
                           Question: 3 b
                                               Page: 8
0653\_m18\_qp\_42
                           Question: 3 c(i)
                                                  Page: 9
0653 \text{ m} 18 \text{ qp} 42
                                                   Page: 9
                          Question: 3 c(ii)
0653 \text{ m} 18 \text{ qp} 42
                          Question: 3 c(iii)
                                                   Page: 10
                         Question: 3 a(i)
                                                 Page: 30
0653 \text{ s} 18 \text{ qp} 41
0653_s18_qp_41
                         Question: 3 a(ii)
                                                 Page: 30
0653\_{\rm s}18\_{\rm q}p\_41
                         Question: 3 b(i)
                                                 Page: 31
                                                 Page: 31
0653_s18_qp_41
                         Question: 3 b(ii)
0653\_{\rm s}18\_{\rm q}p\_41
                         Question: 3 c
                                              Page: 32
0653 s18 qp_42
                         Question: 9 a(i)
                                                 Page: 62
                         Question: 9 a(ii)
                                                 Page: 62
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp} 42
                         Question: 9 b(i)
                                                 Page: 63
                         Question: 9 b(ii)
                                                 Page: 63
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp} 42
                         Question: 9 c
                                              Page: 64
0653\_{\rm s}18\_{\rm q}p\_43
                         Question: 3 a(i)
                                                 Page: 75
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                         Question: 3 a(ii)
                                                 Page: 75
                         Question: 3 a(iii)
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                                                  Page: 75
                         Question: 3 b(i)
0653\_s18\_qp\_43
                                                 Page: 76
                         Question: 3 b(ii)
0653 \text{ s} 18 \text{ qp} 43
                                                 Page: 76
0653 w18 qp 41
                          Question: 3 a(i)
                                                  Page: 96
0653 w18 qp 41
                          Question: 3 a(ii)
                                                  Page: 96
0653 \text{ w}18\_\text{qp}\_41
                          Question: 3 b(i)
                                                  Page: 97
0653\ w18\_qp\_41
                          Question: 3 b(ii)
                                                  Page: 97
0653 \text{ w}18 \text{ qp} 41
                          Question: 3 b(iii)
                                                   Page: 97
```

```
0653 \text{ w}18 \text{ qp} 41
                           Question: 3 b(iv)
                                                     Page: 98
0653 \text{ w} 18 \text{ qp} 42
                           Question: 1 a(i)
                                                   Page: 113
0653 \text{ w} 18 \text{ qp} 42
                           Question: 1 c(i)
                                                   Page: 115
0653\ w18\_qp\_42
                           Question: 1 c(ii)
                                                   Page: 115
0653\_ \, w18\_ \, qp\_ \, 42
                                                    Page: 116
                           Question: 1 c(iii)
                                                Page: 127
0653 \text{w} 18 \text{qp} \text{42}
                           Question: 6 a
0653 \text{w} 18 \text{qp} \text{42}
                           Question: 6 b
                                                Page: 127
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 3 a(i)
                                                   Page: 142
                                                    Page: 142
0653 \text{ w}18 \text{ qp} 43
                           Question: 3 a(ii)
0653 w18 qp 43
                           Question: 3 b(i)
                                                   Page: 143
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 3 b(ii)
                                                    Page: 143
0653\_w18\_qp\_43
                           Question: 3 c
                                                Page: 143
0653 \text{w} 18 \text{qp} \text{4}3
                           Question: 3 d
                                                Page: 144
```

B.3.2 Thermal physics

```
0653 \text{ s} 18 \text{ qp} 41
                         Question: 6 b(i)
                                                 Page: 37
0653_s18_qp_41
                         Question: 6 b(ii)
                                                  Page: 37
0653\_{\rm s}18\_{\rm q}p\_41
                         Question: 6 b(iii)
                                                  Page: 37
                         Question: 6 c(i)
                                                 Page: 57
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp } 42
                         Question: 6 c(ii)
                                                 Page: 57
                         Question: 6 a
                                              Page: 81
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
0653\_{\rm s}18\_{\rm q}p\_43
                         Question: 6 b(i)
                                                 Page: 82
0653 \text{ s} 18 \text{ qp} 43
                         Question: 6 b(ii)
                                                  Page: 82
0653 \text{w} 18 \text{qp} \text{4}1
                          Question: 6 a
                                               Page: 102
                                                  Page: 102
0653\_w18\_qp\_41
                          Question: 6 b(i)
                          Question: 6 b(ii)
0653 w18 qp 41
                                                  Page: 102
0653 \text{ w}18 \text{ qp} 42
                          Question: 1 b(i)
                                                  Page: 114
0653 \text{ w}18 \text{ qp} 42
                          Question: 1 b(ii)
                                                   Page: 114
0653 w18 qp 42
                          Question: 6 c
                                               Page: 127
0653 \text{ w} 18 \text{ qp} 43
                          Question: 6 a
                                               Page: 150
0653\_w18\_qp\_43
                          Question: 6 b(i)
                                                  Page: 150
0653 \text{ w}18 \text{ qp} 43
                          Question: 6 b(ii)
                                                   Page: 151
```

B.3.3 Waves

```
0653 \quad m18\_qp\_42
                         Question: 6 b(i)
                                                Page: 14
                         Question: 6 b(ii)
                                                 Page: 14
0653_m18_qp_42
                         Question: 6 c
                                             Page: 15
0653 m18 qp_42
0653 \text{ s} 18 \text{ qp} 41
                        Question: 6 a
                                            Page: 36
                                            Page: 51
                        Question: 3 c
0653 \text{ s} 18 \text{ qp} 42
0653 \text{ s} 18 \text{ qp} 42
                        Question: 6 a(i)
                                               Page: 56
0653\_{\rm s}18\_{\rm q}p\_42
                        Question: 6 a(ii)
                                                Page: 56
0653\_{\rm s}18\_{\rm q}p\_42
                                            Page: 56
                        Question: 6 b
                        Question: 3 c(i)
                                               Page: 76
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
                        Question: 3 c(ii)
                                               Page: 77
0653 \text{\_s} 18 \text{\_qp} \text{\_} 43
0653 \text{ s} 18 \text{ qp} 43
                        Question: 9 c
                                            Page: 88
0653 w18 qp 41
                         Question: 6 c(i)
                                                Page: 103
0653_w18_qp_41
                         Question: 6 c(ii)
                                                Page: 103
0653\ w18\_qp\_42
                                                Page: 128
                         Question: 6 d(i)
0653\_ \, w18\_ \, qp\_ \, 42
                         Question: 6 d(ii)
                                                Page: 128
0653\_w18\_qp\_43
                         Question: 6 c(i)
                                                Page: 152
                         Question: 6 c(ii)
                                                Page: 152
0653 w18 qp 43
```

B.3.4 Electricity

```
Question: 3 d
                                             Page: 10
0653 m18 qp_42
0653 m18 qp_42
                         Question: 6 a
                                             Page: 14
0653\_m18\_qp\_42
                                             Page: 20
                         Question: 9 a
0653\_m18\_qp\_42
                         Question: 9 b
                                             Page: 20
                         Question: 9 c
0653\_m18\_qp\_42
                                             Page: 21
                         Question: 9 d
                                             Page: 21
0653\_m18\_qp\_42
                        Question: 9 a(i)
                                              Page: 41
0653 \text{ s} 18 \text{ qp} 41
0653 \text{ s} 18 \text{ qp} 41
                        Question: 9 a(ii)
                                               Page: 41
0653 \text{ s} 18 \text{ qp} 41
                        Question: 9 a(iii)
                                                Page: 42
0653\_{\rm s}18\_{\rm q}p\_41
                        Question: 9 b
                                            Page: 42
0653\_{\rm s}18\_{\rm q}p\_42
                        Question: 3 a
                                            Page: 50
0653\_{\rm s}18\_{\rm q}p\_42
                        Question: 3 b(i)
                                               Page: 50
                        Question: 3 b(ii)
                                               Page: 51
0653 \text{\_s} 18 \text{\_qp} \text{\_} 42
0653 \text{ s} 18 \text{ qp} 42
                        Question: 9 b(iii)
                                                Page: 63
0653 \text{ s} 18 \text{ qp} 43
                        Question: 9 a
                                            Page: 87
0653 s18 qp_43
                        Question: 9 b
                                            Page: 88
0653 \text{w} 18 \text{qp} \text{4} 1
                         Question: 9 a(i)
                                               Page: 109
0653 w18 qp 41
                         Question: 9 a(ii)
                                                Page: 109
                                               Page: 109
0653 \text{w} 18 \text{qp} \text{4}1
                         Question: 9 b(i)
0653 \text{w} 18 \text{qp} \text{4}1
                         Question: 9 b(ii)
                                                Page: 109
0653\_w18\_qp\_41
                         Question: 9 b(iii)
                                                 Page: 109
0653 w18 qp 42
                         Question: 9 a
                                            Page: 133
0653 \text{w} 18 \text{qp} \text{42}
                         Question: 9 b
                                             Page: 133
0653 \text{w} 18 \text{qp} \text{42}
                         Question: 9 c(i)
                                               Page: 134
0653\_w18\_qp\_42
                         Question: 9 c(ii)
                                                Page: 134
0653\_w18\_qp\_43
                         Question: 9 a(i)
                                               Page: 156
0653\_w18\_qp\_43
                         Question: 9 a(ii)
                                                Page: 157
                         Question: 9 b
                                             Page: 157
0653 \text{ w}18 \text{ qp} 43
```

B.3.5 Space physics